×

Geometric methods and formulations in computational multibody system dynamics. (English) Zbl 1394.70022

Summary: Multibody systems are dynamical systems characterized by intrinsic symmetries and invariants. Geometric mechanics deals with the mathematical modeling of such systems and has proven to be a valuable tool providing insights into the dynamics of mechanical systems, from a theoretical as well as from a computational point of view. Modeling multibody systems, comprising rigid and flexible members, as dynamical systems on manifolds, and Lie groups in particular, leads to frame-invariant and computationally advantageous formulations. In the last decade, such formulations and corresponding algorithms are becoming increasingly used in various areas of computational dynamics providing the conceptual and computational framework for multibody, coupled, and multiphysics systems, and their nonlinear control. The geometric setting, furthermore, gives rise to geometric numerical integration schemes that are designed to preserve the intrinsic structure and invariants of dynamical systems. These naturally avoid the long-standing problem of parameterization singularities and also deliver the necessary accuracy as well as a long-term stability of numerical solutions. The current intensive research in these areas documents the relevance and potential for geometric methods in general and in particular for multibody system dynamics. This paper provides an exhaustive summary of the development in the last decade, and a panoramic overview of the current state of knowledge in the field. 158 Refs.

MSC:

70E55 Dynamics of multibody systems
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics

References:

[1] Abraham, R., Marsden, J.E.: Foundations of Mechanics. Addison-Wesley, Boston (1985)
[2] Angeles, J.: Rational Kinematics. Springer, New York (1988) · Zbl 0706.70003 · doi:10.1007/978-1-4612-3916-1
[3] Angeles, J.: Fundamentals of Robotic Mechanical Systems. Springer, Berlin (2003) · Zbl 1279.70001
[4] Angles, J., Lee, S.: The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. ASME J. Appl. Mech. 55, 243-244 (1988) · Zbl 0672.70017 · doi:10.1115/1.3173642
[5] Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1978) · Zbl 0386.70001 · doi:10.1007/978-1-4757-1693-1
[6] Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-\[ \alpha\] α Lie group time integration methods for constrained mechanical systems. Numer. Math. 129(1), 149-179 (2015) · Zbl 1309.70016 · doi:10.1007/s00211-014-0633-1
[7] Austin, M., Krishnaprasad, P.S., Wang, L.S.: Almost LiePoisson integrators for the rigid body. J. Comput. Phys. 107(1), 105-117 (1993) · Zbl 0782.70001 · doi:10.1006/jcph.1993.1128
[8] Ball, R.S.: The theory of screws. Part I. A geometrical study of the kinematics equilibrium and small oscillations of a rigid body. In: Proceedings of the Royal Irish Academy. Science, vol. 1, 1870-1874, pp. 233-238 · Zbl 1309.70016
[9] Ball, R.S.: The Theory of Screws: A Study in the Dynamics of a Rigid Body. Hodges, Foster (1876) · JFM 08.0599.01
[10] Ball, R.S.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900) · JFM 31.0679.03
[11] Bauchau, O.A., Laulusa, A.: Review of contemporary approaches for constraint enforcement in multibody systems. J. Comput. Nonlinear Dyn. 3 (2008)
[12] Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1-16 (1972) · Zbl 0262.70017 · doi:10.1016/0045-7825(72)90018-7
[13] Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191(3), 467-488 (2001) · Zbl 1004.70005 · doi:10.1016/S0045-7825(01)00283-3
[14] Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems-a comparative study. Comput. Methods Appl. Mech. Eng. 200, 1568-1576 (2011) · Zbl 1228.70003 · doi:10.1016/j.cma.2011.01.007
[15] Blaschke, W.: Nicht-Euklidische Geometrie und Mechanik, vol. I. II, III, Leipzig, Teubner (1942) · Zbl 0027.13304
[16] Bloch, A.M., Crouch, P.E., Marsden, J.E., Ratiu, T.S.: The symmetric representation of the rigid body equations and their discretization. Nonlinearity (2002). doi:10.1088/0951-7715/15/4/316 · Zbl 1064.70004 · doi:10.1088/0951-7715/15/4/316
[17] Bobenko, A.I.: Suris, YuB: Discrete time Lagrangian mechanics on Lie groups, with an application to the lagrange top. Commun. Math. Phys. 204, 147-188 (1999) · Zbl 0945.70010 · doi:10.1007/s002200050642
[18] Borri, M., Bottasso, C.L., Trainelli, L.: Integration of elastic multibody systems by invariant conserving/dissipating algorithms-Part I: formulation. Comput. Methods Appl. Mech. Eng. 190(29/30), 3669-3699 (2001) · Zbl 0990.74024 · doi:10.1016/S0045-7825(00)00286-3
[19] Borri, M., Bottasso, C.L., Trainelli, L.: Integration of elastic multibody systems by invariant conserving/dissipating algorithms-Part II: numerical schemes and applications. Comput. Methods Appl. Mech. Eng. 190(29/30), 3701-3733 (2001) · Zbl 0990.74024
[20] Borri, M., Bottasso, C.L., Trainelli, L.: A novel momentum-preserving/energy-decaying algorithm for finite-element multibody procedures. Comput. Assist. Mech. Eng. Sci. 9(3), 315-340 (2002) · Zbl 1028.70002
[21] Borri, M., Bottasso, C.L., Trainelli, L.: An invariant-preserving approach to robust finite-element multibody simulation. Zeitschrift für Angewandte Mathematik und Mechanik 83(10), 663-676 (2003) · Zbl 1060.70004 · doi:10.1002/zamm.200310065
[22] Bottasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307-331 (1998) · Zbl 0961.74029 · doi:10.1016/S0045-7825(98)00031-0
[23] Bottasso, C.L., Borri, M., Trainelli, L.: Geometric invariance. Comput. Mech. 29(2), 163-169 (2002) · Zbl 1024.74036 · doi:10.1007/s00466-002-0329-8
[24] Bottema, O., Roth, B.: Theoretical Kinematics. Dover Publications, Mineola (1990) · Zbl 0747.70001
[25] Bou-Rabee, N.: Hamilton-Pontryagin integrators on Lie groups. Ph.D. Thesis, California Institute of Technology (2007) · Zbl 1221.37166
[26] Brauchli, H.: Mass-orthogonal formulation of equations of motion for multibody systems. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 42(2), 169-182 (1991) · Zbl 0722.70011 · doi:10.1007/BF00945791
[27] Brockett, R.W.: Explicitly solvable control problems with nonholonomic constraints. In: 38th Conference on Decision Control, Phoenix (1999)
[28] Brockett, RW; Fuhrman, PA (ed.), Robotic manipulators and the product of exponentials formula, 120-129 (1984), New York · Zbl 0535.93034 · doi:10.1007/BFb0031048
[29] Brockett, R. W.: Explicitly solvable control problems with nonholonomic constraints. In: Decision and Control Proceedings of the 38th IEEE Conference. vol.1, pp. 13-16. AZ, Phoenix, doi:10.1109/CDC.1999.832739
[30] Brockett, R.W., Stokes, A., Park, F.: A geometrical formulation of the dynamical equations describing kinematic chains. IEEE Int. Conf. Robot. Autom. 2, 637-641 (1993)
[31] Brodsky, V., Shoham, M.: Dual numbers representation of rigid body dynamics. Mech. Mach. Theory 34, 693-718 (1999) · Zbl 1049.70577 · doi:10.1016/S0094-114X(98)00049-4
[32] Brüls, O., Arnold, M., Cardona, A.: Two Lie group formulations for dynamic multibody systems with large rotations. In: Proceedings IDETC/MSNDC Conference, 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Washington, DC, USA, August 28-31 (2011)
[33] Brüls, O., Cardona, A.: On the use of lie group time integrators in multibody dynamics. J. Comput. Nonlinear Dyn. 5(3) (2010) · Zbl 0908.70007
[34] Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-alpha time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121-137 (2012) · doi:10.1016/j.mechmachtheory.2011.07.017
[35] Burdick, J.W.: An algorithm for generation of efficient manipulator dynamic equations. Proc. IEEE Int. Conf. Robot. Autom. 3, 212-218 (1986)
[36] Cayley, A.: A Sixth memoire upon quantics. Philos. Trans. R. Soc. Lond. Bd. 159, 1859, S.61-91; also in Forsyth, A.R.: The Collected Mathematical Papers of Arthur Cayley, vol. 2. Cambridge University Press, Cambridge (1889)
[37] Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 19, 421-438 (1999) · Zbl 1018.70007
[38] Chasles, M.: Note sur les propriétés g��n érales du système de deux corps semblables entr’eux. Bulletin des Sciences Mathématiques Astronomiques Physiques et Chemiques 14, 321-326 (1830)
[39] Chevallier, D.P.: Lie groups and multibody dynamics formalism. In: Proceedings of EUROMECH Colloquium 320, Prague, pp. 1-20 (1994) · Zbl 0779.70004
[40] Chevallier, D.P.: La formation des équations de la dynamique. Examen des diverses méthodes, Méchanique 5-20, (1984)
[41] Chevallier, D.P.: Lie algebras, modules, dual quaternions and algebraic methods in kinematics. Mech. Mach. Theory 26(6), 613-627 (1991) · doi:10.1016/0094-114X(91)90043-4
[42] Chhabra, R.: A Unified Geometric Framework for Kinematics, Dynamics and Concurrent Control of Free-base, Open-chain Multi-body Systems with Holonomic and Nonholonomic Constraints. Ph.D. Thesis, Department of Aerospace Science and Engineering, University of Toronto (2014) · Zbl 0972.65509
[43] Chhabra, R., Emami, M.R.: Symplectic reduction of holonomic open-chain multi-body systems with constant momentum. J. Geom. Phys. 89, 82-110 (2015) · Zbl 1312.53106 · doi:10.1016/j.geomphys.2014.12.011
[44] Ciureanu, I.A., Condurache, D.: A Quaternion Solution of the Motion in a Central Force Field Relative to a Rotating Reference Frame · Zbl 1493.70064
[45] Cohen, A., Shoham, M.: Application of hyper-dual numbers to multibody kinematics. ASME J. Mech. Robot. 8(1) (2015)
[46] Condurache, D., Martinusi, V.: Quaternionic exact solution to the relative orbital motion problem journal of guidance. Control Dyn. 33(4), 1035-1047 (2010) · doi:10.2514/1.47782
[47] Dai, J.S.: Finite displacement screw operators with embedded Chasles’ motion. J. Mech. Robot. Trans. ASME 4(4) (2012)
[48] Dai, J.S.: An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist. Mech. Mach. Theory 41(1), 41-52 (2006) · Zbl 1107.70002 · doi:10.1016/j.mechmachtheory.2005.04.004
[49] Darboux, G.: Leçons sur la théorie géné rale des surfaces et les applications géométriques du calcul infinitesimal, vol. 4. Gautiers-Villars, Paris (1887) · JFM 19.0746.02
[50] Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on matrices. J. Appl. Mech. 22, 215-221 (1955) · Zbl 0064.15603
[51] Di Gregorio, R.: Position analysis and path planning of the S-(nS)PU-SPU and S-(nS)PU-2SPU underactuated wrists. 4, 6 (2012) · Zbl 0904.65077
[52] Di Gregorio, R.: Kinematic analysis of the (nS)-2SPU underactuated parallel wrist. ASME J. Mech. Robot. 4, 7 (2012)
[53] Dimentberg, F.M.: The screw calculus and its applications in mechanics. Foreign Technology Division translation, Wright-Patterson AFB, Ohio, FTD-HT-1632-67 (1965)
[54] Duindam, V., Stramigioli, S.: Singularity-free dynamic equations of open-chain mechanisms with general holonomic and nonholonomic joints. IEEE Trans. Robot. 24(3), 517-526 (2008) · doi:10.1109/TRO.2008.924250
[55] E. Study: Von den Bewegungen und Umlegungen. Math. Ann. 39, 441-566 (1891) · JFM 23.0527.01 · doi:10.1007/BF01199824
[56] Engø, K.: Partitioned Runge-Kutta methods in Lie-group setting. BIT Numer. Math. 43(1), 21-39 (2003) · Zbl 1022.65081 · doi:10.1023/A:1023668015087
[57] Engo, K., Faltinsen, S.: Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy. SIAM J. Numer. Anal. 39, 128-145 (2001) · Zbl 0993.65142 · doi:10.1137/S0036142999364212
[58] Engø, K., Marthinsen, A.: Modeling and solution of some mechanical problems on lie groups. Multibody Syst. Dyn. 2, 71-88 (1998) · Zbl 0923.70003 · doi:10.1023/A:1009701220769
[59] Engø, K., Marthinsen, A.: A note on the numerical solution of the heavy top equations. Multibody Syst. Dyn. 5, 387-397 (2001) · Zbl 1049.70502 · doi:10.1023/A:1011459217639
[60] Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic Publishers, Dordrecht (1987)
[61] Featherstone, R.: The acceleration vector of a rigid body. Int J. Robot. Res. 20, 841-846 (2001) · doi:10.1177/02783640122068137
[62] Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2008) · Zbl 1146.70002 · doi:10.1007/978-0-387-74315-8
[63] Gaćeša, M., Jelenić, G.: Modified fixed-pole approach in geometrically exact spatial beam finite elements. Finite Elem. Anal. Des. 99, 39-48 (2015) · doi:10.1016/j.finel.2015.02.001
[64] Garofalo, G., Ott, C., Albu-Schäffer, A.: On the closed form computation of the dynamic matrices and their differentiations
[65] Gibson, C.G., Hunt, K.H.: Geometry of screw systems-1: screws: genesis and geometry. Mech. Mach. Theroy 25(1), 1-10 (1990) · doi:10.1016/0094-114X(90)90103-Q
[66] Gibson, C.G., Hunt, K.H.: Geometry of screw systems-2: classification of screw systems. Mech. Mach. Theroy 25(1), 11-27 (1990) · doi:10.1016/0094-114X(90)90104-R
[67] Gonzales, O.: Time integration and discrete Hamiltonian systems. J. Nonlinear Sci. 6, 449-467 (1996) · Zbl 0866.58030 · doi:10.1007/BF02440162
[68] Grassmann, H.: Ausdehnungslehre. Vollstandig und in strenger Form bearbeitet, Verlag T.C.F. Enslin, Berlin (1862); also in Engel, Fr.: Gesammelte mathematische und physikalische Werke, 1, Part. 2, Teubner, Leipzig (1896)
[69] Grechka, G.P.: Determining the angular motion of a solid described by stochastic kinematic poisson equations. Sov. Appl. Mech. 26(10), 1009-1014 (1990) · Zbl 0850.70089 · doi:10.1007/BF00888855
[70] Grosch, P., Thomas, F.: A bilinear formulation for the motion planning of non-holonomic parallel orienting platforms. 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS). November 3-7, pp. 953-958. Tokyo, Japan (2013)
[71] Grosch, P., Di Gregorio, R., Thomas, F.: Generation of under-actuated manipulators with non-holonomic joints from ordinary manipulators. J. Mech. Robot. 2(1), 8 (2009)
[72] Gupta, K.C.: Kinematic analysis of manipulators using the zero reference position description. Int. J. Robot. Res. 5(2), 1986 (1986)
[73] Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 12, 399-450 (2003) · Zbl 1046.65110 · doi:10.1017/S0962492902000144
[74] Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006) · Zbl 1094.65125
[75] Holm, D.D.: Geometric Mechanics. Rotating, Translating and Rolling. Imperial College Press, London, Part II (2008) · Zbl 1160.70001 · doi:10.1142/p557
[76] Holm, D.D.: Geometric mechanics, vol. 2. World Scientific Publication, Singapore (2011) · Zbl 1227.70001 · doi:10.1142/p801
[77] Hunt, K.H.: Kinematic Geometry of Mechanisms. Clarendon Press, Oxford (1978) · Zbl 0401.70001
[78] Ionescu, T.: International federation for the promotion of mechanism and machine science (IFToMM): terminology for the mechanism and machine science. Mech. Mach. Theory 38 (2003) · Zbl 1087.70500
[79] Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numerica, pp. 215-365 (2000) · Zbl 1064.65147
[80] Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer, Berlin (2011) · Zbl 1215.70001 · doi:10.1007/978-1-4419-7267-5
[81] Jain, A.: Graph theoretic foundations of multibody dynamics. Part I: structural properties. Multibody Syst. Dyn. 26, 307-333 (2011) · Zbl 1358.70013 · doi:10.1007/s11044-011-9266-7
[82] Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 971-984 (1995)
[83] Klein, F.: Vergleichende Betrachtungen über neuere geometrische Forschungen. Verlag von Andreas Deichert, Erlangen (1872) · JFM 25.0871.01
[84] Krysl, P.: Explicit momentum-conserving integrator for dynamics of rigid bodies approximating the midpoint lie algorithm. Int. J. Numer. Methods Eng. 63(15), 2171-2193 (2005) · Zbl 1093.70002 · doi:10.1002/nme.1361
[85] Krysl, P.: Dynamically equivalent implicit algorithms for the integration of rigid body rotations. Commun. Numer. Methods Eng. 24(2), 141-156 (2008) · Zbl 1137.70003 · doi:10.1002/cnm.963
[86] Krysl, P., Endres, L.: Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies. Int. J. Numer. Meth. Eng. 62, 2154-2177 (2005) · Zbl 1118.70300 · doi:10.1002/nme.1272
[87] Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004) · Zbl 1069.65139
[88] Leimkuhler, B.J., Skeel, R.D.: Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112, 117-125 (1994) · Zbl 0817.65057 · doi:10.1006/jcph.1994.1085
[89] Lewis, D., Simo, J.C.: Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups. J. Nonlinear Sci. 4, 253-299 (1994) · Zbl 0799.58069 · doi:10.1007/BF02430634
[90] Li, S., Qin, M.: Lie-Poisson integration for rigid body dynamics. Comput. Math. Appl. 30, 105-118 (1995) · Zbl 0834.70006 · doi:10.1016/0898-1221(95)00150-W
[91] Liu, Y.: Screw-matrix method in dynamics of multibody systems. Acta Mech. Sin. 4(2), 165-174 (1988) · Zbl 0728.70006 · doi:10.1007/BF02487718
[92] Lurie, A.I.: Analytical Mechanics. Series, Foundations of Engineering Mechanics), Springer, Berlin (2002) · Zbl 1015.70001 · doi:10.1007/978-3-540-45677-3
[93] Magnus, W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. VII, 649-673 (1954) · Zbl 0056.34102
[94] Maißer, P.: Analytische Dynamik von Mehrkö rpersystemen. J. Appl. Math. Mecha./Zeitschrift f ür Angewandte Mathematik und Mechanik (ZAMM) 68(10), 463-481 (1988) · Zbl 0668.70010
[95] Maisser, P.: Differential-geometric methods in multibody dynamics. Nonlinear Anal. Theory Methods Appl. 30(8), 5127-5133 (1997) · Zbl 0908.70007 · doi:10.1016/S0362-546X(96)00147-2
[96] Mäkinen, J.: Critical Study of Newmark-scheme on manifold of finite rotations. Comp. Methods Appl. Eng. 191, 817-828 (2001) · Zbl 1002.70003 · doi:10.1016/S0045-7825(01)00291-2
[97] Ma, Z., Rowley, C.W.: Lie-Poisson integrators: a Hamiltonian, variational approach. Int. J. Numer. Methods Eng. 82(13), 1609-1644 (2010). doi:10.1002/nme.2812 · Zbl 1193.70004 · doi:10.1002/nme.2812
[98] Marsden, J.E., Holm, D.D.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1-81 (1998) · Zbl 0951.37020 · doi:10.1006/aima.1998.1721
[99] Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, New York (1994) · Zbl 0811.70002 · doi:10.1007/978-1-4612-2682-6
[100] Marsden, J., Scheurle, J.: The reduced Euler-Lagrange equations. Fields Inst. Commun. 1, 139-164 (1993) · Zbl 0789.70013
[101] Marthinsen, A., Munthe-Kaas, H., Owren, B.: Simulation of ordinary differential equations on Manifolds-some numerical experiments and verifications. Model. Identif. Control 18(1), 75-88 (1997) · Zbl 0870.34015 · doi:10.4173/mic.1997.1.4
[102] McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)
[103] McCarthy, J.M.: Geometric Design of Linkages. Springer, New York (2000) · Zbl 0955.70001
[104] McLachlan, R.I.: Explicit Lie-Poisson integration and the Euler equations. Phys. Rev. Lett. 71, 3043-3046 (1993) · Zbl 0972.65509 · doi:10.1103/PhysRevLett.71.3043
[105] Equivariant constrained symplectic integration: McLachlan, R.I., Scovel., C. J. Nonlinear Sci. 5, 233-256 (1995) · Zbl 0836.58017 · doi:10.1007/BF01212956
[106] Mladenova, C.D.: Group-theoretical methods in manipulator kinematics and symbolic computations. J. Intell. Robot. Syst. 8, 21-34 (1993) · Zbl 0779.70004 · doi:10.1007/BF01258638
[107] Mladenova, C.D.: Applications of lie group theory to the modeling and control of multibody systems. Multibody Syst. Dyn. 3(4), 367-380 (1999) · Zbl 0965.70015 · doi:10.1023/A:1009828931939
[108] Mladenova, C.D.: Group theory in the problems of modeling and control of multi-body systems. J. Geom. Symmetry Phys. 8, 17-121 (2006) · Zbl 1121.70007
[109] Mozzi, G.: Discorso matematico sopra il rotamento momentaneo dei corpi. Napoli: Stamperia di Donato Campo (1763)
[110] Müller, A.: A note on the motion representation and configuration update in time stepping schemes for the constrained rigid body. BIT Numer. Math. 56(3) (2016) · Zbl 1398.65198
[111] Müller, A.: Partial derivatives of the inverse mass matrix of multibody systems via its factorization. IEEE Trans. Robot. 23(1), 164-168 (2007) · doi:10.1109/TRO.2006.889482
[112] Müller, A.: Higher derivatives of the kinematic mapping and some applications. Mech. Mach. Theory 76, 70-85 (2014) · doi:10.1016/j.mechmachtheory.2014.01.007
[113] Müller, A.; Lenarcic, J. (ed.); Khatib, O. (ed.), Derivatives of screw systems in body-fixed representation (2014), Berlin
[114] Müller, A.: Coordinate mappings for rigid body motions. Comput. Nonlinear Dyn. ASME J (2016). doi:10.1115/1.4034730 · doi:10.1115/1.4034730
[115] Müller, A., Maisser, P.: Lie group formulation of k inematics and dynamics of constrained MBS and its application to analytical mechanics. Multibody Syst. Dyn. 9, 311-352 (2003) · Zbl 1021.70003 · doi:10.1023/A:1023321630764
[116] Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173-202 (2014) · doi:10.1016/j.mechmachtheory.2014.06.014
[117] Munthe-Kaas, H.: Runge Kutta methods on Lie groups. BIT 38(1), 92-111 (1998) · Zbl 0904.65077 · doi:10.1007/BF02510919
[118] Munthe-Kaas, H.: High order Runge-Kutta methods on manifolds. Appl. Numer. Math. 29, 115-127 (1999) · Zbl 0934.65077 · doi:10.1016/S0168-9274(98)00030-0
[119] Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1993) · Zbl 0858.70001
[120] Ordan, J.C.G.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1-2), 49-62 (2010) · Zbl 1189.70080
[121] Orin, D., Schrader, W.: Efficient computation of the Jacobian for robot manipulators. Int. J. Robot. Research 3(4) (1984) · Zbl 1028.70002
[122] Orin, D., et al.: Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods. Math. Biosci. 43, 107-130 (1979) · Zbl 0433.92010 · doi:10.1016/0025-5564(79)90104-4
[123] Owren, B., Marthinsen, A.: Runge-Kutta methods adapted to manifolds and based in rigid frames. BIT 39, 116-142 (1999) · Zbl 0919.65049 · doi:10.1023/A:1022325426017
[124] Papastavridis, J.G.: Analytical Mechanics: A Comprehensive Treatise on the Dynamics of Constrained Systems; For Engineers, Physicists, and Mathematicians. Oxford University Press, Oxford (2002) · Zbl 1001.70001
[125] Park, F.C.: Computational aspects of the product-of-exponentials formula for robot kinematics. IEEE Trans. Autom. Contr 39(3), 643-647 (1994) · Zbl 0925.93628 · doi:10.1109/9.280779
[126] Park, F.C., Bobrow, J.E., Ploen, S.R.: A Lie group formulation of robot dynamics. Int. J. Robot. Res. 14(6), 609-618 (1995) · doi:10.1177/027836499501400606
[127] Park, F.C., Choi, J., Ploen, S.R.: Symbolic formulation of closed chain dynamics in independent coordinates. Mech. Mach. Theory 34(5), 731-751 (1999) · Zbl 1049.70591 · doi:10.1016/S0094-114X(98)00052-4
[128] Park, J., Chung, W.K.: Geometric integration on Euclidean group with application to articulated multibody systems. IEEE Trans. Robot. Autom. 21(5), 850-863 (2005) · doi:10.1109/TRO.2005.852253
[129] Park, F.C., Kim, M.W.: Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies. Z. Angew. Math. Phys. 51, 820-834 (2000) · Zbl 0998.70004 · doi:10.1007/PL00001521
[130] Ploen, S.R.: Geometric Algorithms for the Dynamics and Control of Multibody Systems. Ph.D. thesis, Mechanical and Aerospace Engineering, University of California, Irvine (1997) · Zbl 1049.70591
[131] Ploen, S.R., Park, F.C.: A Lie group formulation of the dynamics of cooperating robot systems. Robot. Auton. Syst. 21, 279-287 (1997) · doi:10.1016/S0921-8890(96)00802-0
[132] Ploen, S.R., Park, F.C.: Coordinate-invariant algorithms for robot dynamics. IEEE Trans. Robot. Autom. 15(6), 1130-1135 (1999) · doi:10.1109/70.817677
[133] Plücker, J.: On a geometry of space. Philos. Trans. R. Soc. Lond. A155, 725-791 (1865) · doi:10.1098/rstl.1865.0017
[134] Plücker, J.: Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement. Teubner, Leipzig (1868)
[135] Reich, S.: Momentum conserving symplectic integrators. Physica D Nonlinear Phenom. 76, 375-383 (1994) · Zbl 0818.58020 · doi:10.1016/0167-2789(94)90046-9
[136] Reich, S.: Symplectic methods for conservative multibody systems. Integr. Algorithms Class. Mech. 10, 181-192 (1996) · doi:10.1090/fic/010/11
[137] Reuleaux, F.: Theoretische Kinematik: Grundzüge einer Theorie des Maschinenwesens. Vieweg, Braunschweig (1875) · JFM 07.0540.03
[138] Reuleaux, F.: Kinematics of Machinery. Dover, New York (1963)
[139] Rodriguez, G.: Kalman filtering, smoothing, and ecursive robot arm forward and inverse dynamics. IEEE J. Robot. Autom. RA-3(6), 624-639 (1987) · Zbl 0433.92010
[140] Rodriguez, G., Jain, A., Kreutz-Delgado, K.: A spatial operator algebra for manipulator modelling and control. Int. J. Robot. Res. 10(4), 371-381 (1991) · doi:10.1177/027836499101000406
[141] Rodriguez, G., Jain, A., Kreutz-Delgado, K.: Spatial operator algebra for multibody system dynamics. J. Astron Sci. 40, 27-50 (1992)
[142] Sattinger, D.H., Weaver, O.L.: Lie Groups and Algebras with Applications to Physics. Geometry and Mechanics. Springer, New York (1993) · Zbl 0595.22017
[143] Selig, J.M.: Geometric Fundamentals of Robotics (Monographs in Computer Science Series). Springer, New York (2005) · Zbl 1062.93002
[144] Schiehlen, W. (ed.): Multibody Systems Handbook. Springer, Berlin (1990) · Zbl 0703.70002
[145] Selig, J.M.: A class of explicitly solvable vehicle motion problems. IEEE Trans. Robot. 31(3), 766-777 (2015) · doi:10.1109/TRO.2015.2426471
[146] Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing undergoing large motions-geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125-161 (1986) · Zbl 0618.73100 · doi:10.1016/0045-7825(88)90073-4
[147] Simo, J.C., Wong, K.K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31(1), 19-52 (1991) · Zbl 0825.73960 · doi:10.1002/nme.1620310103
[148] Sohl, G.A., Bobrow, J.E.: A recursive multibody dynamics and sensitivity algorithm for branched kinematic chains. ASME J. Dyn. Syst. Meas. Control 123, 391-399 (2001) · doi:10.1115/1.1376121
[149] Song of the Screw, Memorabilia Mathematica or the Philomath’s Quotation-Book. Robert Edouard Moritz, pp. 320-322 (1914) · JFM 45.0058.06
[150] Stramigioli, S.: Modeling and IPC Control of Interactive Mechanical Systems. A Coordinate-Free Approach. Springer, Berlin (2001) · Zbl 1051.93003
[151] Terze, Z., Müller, A., Zlatar, D.: Lie-group integration method for constrained multibody systems in state space. Multibody Syst. Dyn. 34(3), 275-305 (2014) · Zbl 1339.70037 · doi:10.1007/s11044-014-9439-2
[152] Terze, Z., Müller, A., Zlatar, D.: An angular momentum and energy conserving lie-group integration scheme for rigid body rotational dynamics originating from Störmer-Verlet algorithm. J. Comput. Nonlinear Dyn. 10(5), 11 (2015)
[153] Terze, Z., Müller, A., Zlatar, D.: Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations. Multibody Syst. Dyn. 37(3), 1-25 (2016) · Zbl 1386.70009
[154] Uicker, J.J.: On the dynamics analysis of spatial linkages using \[4\times 44\]×4 matrices. Ph.D. Thesis, Nothwestern University (1965)
[155] Uicker, J.J., Ravani, B., Sheth, P.N.: Matrix Methods in the Design Analysis of Mechanisms and Multibody Systems. Cambridge University Press, Cambridge (2013) · Zbl 1305.70001 · doi:10.1017/CBO9781139032339
[156] von Mises, R.: Motorrechnung ein neues Hilfsmittel der Mechanik. Zeitschrift für Angewandte Mathematik und Mechanik 4(2), 124-155 (1924) · JFM 50.0520.01 · doi:10.1002/zamm.19240040207
[157] Wittenburg, J.: Dynamics of Multibody Systems. Springer, Berlin (2008) · Zbl 1131.70001
[158] Wu, Y., Löwe, H., Carricato, M., Li, Z.: Inversion symmetry of the euclidean group: theory and application to robot kinematics. IEEE Trans. Robot. 32(2), 312-326 (2016) · doi:10.1109/TRO.2016.2522442
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.