×

Boundary-value problems for differential-algebraic equations: A survey. (English) Zbl 1343.65102

Ilchmann, Achim (ed.) et al., Surveys in differential-algebraic equations III. Cham: Springer (ISBN 978-3-319-22427-5/pbk; 978-3-319-22428-2/ebook). Differential-Algebraic Equations Forum, 177-309 (2015).
The introduction (Sect. 1) contains the review of natural scientific applications of boundary value problems (BVP) for differential-algebraic equations (DAEs), among them especially the references on optimal control problems, problems of electrical networks and multi-body systems. Also, here four substantive examples are presented.
This article deals with DAEs of the form \[ f((Dx)'(t), x(t),t)=0, \tag{1} \] most result remain valid for DAEs of standard form \[ \mathfrak{f}(x'(t), x(t),t)=0. \tag{2} \] The function \(f:\mathbb{R}^n\times \mathcal{D}_f\times \mathcal{I}_f \to \mathbb{R}^m\) (\(\mathcal{D}_f\times \mathcal{I}_f\subseteq \mathbb{R}^m \times \mathbb{R}\)) open is continuous and has continuous partial derivatives \(f_y\) and \(f_x\) with respect to the first two variables \(y \in \mathbb{R}^n\), \(x\in \mathcal{D}_f\), the partial Jacobian \(f_y(y,x,t)\) is everywhere singular, the matrix function \(D(t):\mathcal{I}_f\to \mathcal{L}(\mathbb{R}^m, \mathbb{R}^n)\) is at least continuous, often continuously differentiable, and \(D(t)\) has constant rank \(r\) on the given interval \(\mathcal{I}_f\); always, im D is supposed to be a \(\mathcal{C}^1\)-subspace varying in \(\mathbb{R}^n\). Two-point boundary conditions \(g(x(a),x(b))=0\) are considered, \(a,b \in \mathcal{I}_f\), where the function \(g:\mathcal{D}_f\times \mathcal{D}_f\) is continuous differentiable, the number \(l\leq m\) of boundary conditions depends on the structure of the DAEs.
Everywhere below classical solutions (1), (2) are lucking for, i.e., belonging to the interval \(\mathcal{I}\subseteq \mathcal{I}_f\) with values \(x(t)\in \mathcal{D}_f\), \(t\in \mathcal{I}\) and satisfying the DAE pointwise on \(\mathcal{I}\).
Then, on a compact interval \(\mathcal{I}\), the Banach functional spaces \(\mathcal{C}(\mathcal{I},\mathbb{R}^m)\) and \(\mathcal{C}^1_D(\mathcal{I},\mathbb{R}^m)\) are defining by the norms \(\|x\|_{\infty}:=\max_{t\in \mathcal{I}}|x(t)|\), \(x\in \mathcal{C}(\mathcal{I},\mathbb{R}^m)\) and \(\|x\|_{\mathcal{C}^1_D}:=\|x\|_{\infty}+\|(Dx)'\|_{\infty}\), \(x\in \mathcal{C}^1_D(\mathcal{I},\mathbb{R}^m)\).
Section 2 is devoted to the analytical theory of DAEs and contains the following subsections: Basic assumptions and terminology; The flow structure of regular linear DAEs; Accurately stated two-point boundary conditions; Conditioning constants and dichotomy; Nonlinear BVPs; Other boundary conditions; Further references, comments, and open questions. In Subsect. 2.1, three definitions of the considered BVP for DAEs are introduced.
Subsect. 2.2 is devoted to the flow structure of regular linear DAEs \(A(t)(Dx)'(t)+B(t)x(t)=q(t)\), \(t\in \mathcal{I}\). Solvability statements for the regular BVPs \( A(Dx)'+Bx=q\), \(G_ax(a)+G_bx(b)=\gamma\) with some restrictions on projectors are presented in Subsect. 2.3. Classical theory for ordinary BVPs is generalized on DAEs in theorems of Subsect. 2.4.
In Subsect. 2.5.1 (2.5.2), a series of equivalence conditions to the nonlinear BVP (1), (2) is established as well as their well-posedness in the natural and advanced setting. Here some results for index-1 and index-2 DAEs with the perturbed initial conditions are marked.
In Subsect. 2.6 for the nonlinear DAE (1), three types of boundary conditions are considered.
Subsect. 2.7 contains further references, comments and open problems.
Sect. 3 is devoted to collocation methods for the well-posed DAEs and contains Subsect 3.1 BVPs well-posed in the natural setting devoted to the BVPs \[ f((Dx)'(t),x(t),t)=0,\;\; g(x(a),x(b)=0, \] with basic assumptions from Subsect 2.1 and additionally in \(D(t)=\mathbb{R}^n\), \(t\in [a,b]=\mathcal{I}\), satisfying criteria for their local well-posedness in the natural setting, Subsect. 3.2 Partitioned equations (Partitioned component approximations); in Subsect. 3.3 separately for BVPs of index-2 DAEs; Subsect. 3.4 BVPs for singular index-1 DAEs in linear and nonlinear cases; Subsect. 3.5 Defect-based a posteriori error estimation for index-DAEs
Sect. 4 is devoted to the review of shooting numerical methods, at first for linear DAEs (computation of consistent initial values, single shooting, multiple shooting), then to nonlinear index-1 DAEs.
The Subsect. 5.1 of Sect. 5 Miscellaneous says about periodical solutions of DAEs. The works devoted to Lyapounov stability and Floquet exponents are marked, Subsect. 5.2 gives the presentation of the Abramov transfer method for index-1 and index-2 DAEs. Subsect. 5.3 says on Finite difference methods in DAEs that they turn out to be less efficient than collocation methods, the same is true for BVPs in DAEs. Two theorems from Subsect. 5.4 allow to formulate the BVP for (1), (2) as an operator equation. Therefore, to such DAEs, the Newton-Kantorovich method turns out to be applicable, that is done in the articles by R. März [Appl. Numer. Math. 18, No. 1–3, 267–292 (1995; Zbl 0840.65071)] and by T. Petry [Realisierung des Newton-Kantorovich-Verfahrens für nichtlineare Algebro-Differentialgleichungen mittels Abramov-Transfer. Berlin: Logos Verlag (1998; Zbl 0905.65090)]] and reflected in Subsect. 5.4. par The Appendix 6 contains two subsections: Basics concerning regular DAEs and List of symbols and abbreviations.
For the entire collection see [Zbl 1333.65004].

MSC:

65L80 Numerical methods for differential-algebraic equations
34A09 Implicit ordinary differential equations, differential-algebraic equations
34B05 Linear boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
65L70 Error bounds for numerical methods for ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations

Software:

Sbvp; COLNEW; COLSYS
Full Text: DOI

References:

[1] Abramov, A. A., On transfer of boundary conditions for systems of linear ordinary differential equations (a variant of transfer method), USSR Comput. Math. Math. Phys., 1, 3, 542-544 (1961)
[2] Amodio, P.; Mazzia, F., Numerical solution of differential algebraic equations and computation of consistent initial/boundary conditions, J. Comput. Appl. Math., 87, 135-146 (1997) · Zbl 0894.65031 · doi:10.1016/S0377-0427(97)00178-7
[3] Amodio, P.; Mazzia, F., An algorithm for the computation of consistent initial values for differential-algebraic equations, Numer. Algorithms, 19, 13-23 (1998) · Zbl 0917.65065 · doi:10.1023/A:1019175027639
[4] Anh, P.K.: Multipoint boundary-value problems for transferable differential-algebraic equations. I-linear case. Vietnam J. Math. 25(4), 347-358 (1997) · Zbl 0937.34016
[5] Anh, P.K.: Multipoint boundary-value problems for transferable differential-algebraic equations. II-quasilinear case. Vietnam J. Math. 26(4), 337-349 (1998) · Zbl 0977.34010
[6] Anh, P. K.; Nghi, N. V., On linear regular multipoint boundary-value problems for differential algebraic equations, Vietnam J. Math., 28, 2, 183-188 (2000) · Zbl 0970.34004
[7] Ascher, U.; Lin, P., Sequential regularization methods for nonlinear higher index DAEs, SIAM J. Sci. Comput., 18, 160-181 (1997) · Zbl 0949.65084 · doi:10.1137/S1064827595287778
[8] Ascher, U. M.; Petzold, L. R.; Byrne, G. D.; Schiesser, W. E., Numerical methods for boundary value problems in differential-algebraic equations, Recent Developments in Numerical Methods and Software for ODEs/DAEs/PDEs, 125-135 (1992), London/Singapore: World Scientific, London/Singapore · Zbl 0925.65003 · doi:10.1142/9789814335867_0007
[9] Ascher, U. M.; Petzold, L. R., Projected collocation for higher-order higher-index differential-algebraic equations, J. Comput. Appl. Math., 43, 243-259 (1992) · Zbl 0772.65049 · doi:10.1016/0377-0427(92)90269-4
[10] Ascher, U. M.; Petzold, L. R., Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations (1998), Philadelphia: SIAM, Philadelphia · Zbl 0908.65055 · doi:10.1137/1.9781611971392
[11] Ascher, U.; Spiteri, R., Collocation software for boundary value differential-algebraic equations, SIAM J. Sci. Comput., 15, 938-952 (1994) · Zbl 0804.65080 · doi:10.1137/0915056
[12] Ascher, U., Christiansen, J., Russell, R.: Collocation software for boundary value ODEs. ACM Trans. Math. Softw. 7(209-222) (1981) · Zbl 0455.65067
[13] Ascher, U.; Mattheij, R.; Russell, R., Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (1988), Englewood Cliffs, NJ: Prentice Hall, Englewood Cliffs, NJ · Zbl 0671.65063
[14] Auzinger, W., Kneisl, G., Koch, O., Weinmüller, E.: SBVP 1.0 - A MATLAB solver for singular boundary value problems. ANUM Preprint 2/02, Vienna University of Technology (2002)
[15] Auzinger, W.; Koch, O.; Weinmüller, E., Efficient collocation schemes for singular boundary value problems, Numer. Algorithms, 31, 5-25 (2002) · Zbl 1021.65038 · doi:10.1023/A:1021151821275
[16] Auzinger, W.; Kneisl, G.; Koch, O.; Weinmüller, E., A collocation code for boundary value problems in ordinary differential equations, Numer. Algorithms, 33, 27-39 (2003) · Zbl 1030.65089 · doi:10.1023/A:1025531130904
[17] Auzinger, W.; Koch, O.; Weinmüller, E., Analysis of a new error estimate for collocation methods applied to singular boundary value problems, SIAM J. Numer. Anal., 42, 2366-2386 (2005) · Zbl 1087.65082 · doi:10.1137/S0036142902418928
[18] Auzinger, W., Lehner, H., Weinmüller, E.: Defect-based a-posteriori error estimation for Index-1 DAEs. ASC Technical Report 20, Vienna University of Technology (2007) · Zbl 1182.65130
[19] Auzinger, W.; Lehner, H.; Weinmüller, E., An efficient asymptotically correct error estimator for collocation solution to singular index-1 DAEs, BIT Numer. Math., 51, 43-65 (2011) · Zbl 1233.65049 · doi:10.1007/s10543-011-0321-9
[20] Backes, A.: Extremalbedingungen für Optimierungs-Probleme mit Algebro-Differentialgleichungen. Logos, Berlin (2006). Dissertation, Humboldt-University Berlin (October 2005/January 2006)
[21] Bader, G.; Ascher, U., A new basis implementation for a mixed order boundary value ODE solver, SIAM J. Sci. Stat. Comput., 8, 483-500 (1987) · Zbl 0633.65084 · doi:10.1137/0908047
[22] Bai, Y., A perturbated collocation method for boundary value problems in differential-algebraic equations, Appl. Math. Comput., 45, 269-291 (1991) · Zbl 0757.65093 · doi:10.1016/0096-3003(91)90084-Z
[23] Bai, Y.: Modified collocation methods for boundary value problems in differential-algebraic equations. Ph.D. thesis, Fachbereich Mathematik, Philipps-Universität, Marburg/Lahn (1991) · Zbl 0764.65045
[24] Bai, Y., A modified Lobatto collocation for linear boundary value problems of differential-algebraic equations, Computing, 49, 139-150 (1992) · Zbl 0769.65056 · doi:10.1007/BF02238746
[25] Baiz, A.: Effiziente Lösung periodischer differential-algebraischer Gleichungssysteme in der Schaltungssimulation. Ph.D. thesis, Fachbereich Informatik, Technische Universität, Darmstadt. Shaker, Aachen (2003)
[26] Balla, K., Differential-algebraic equations and their adjoints (2004), Doctor of the Hungarian Academy of Sciences, Hungarian Academy of Sciences, Budapest: Dissertation, Doctor of the Hungarian Academy of Sciences, Hungarian Academy of Sciences, Budapest
[27] Balla, K.; März, R., Transfer of boundary conditions for DAEs of index 1, SIAM J. Numer. Anal., 33, 6, 2318-2332 (1996) · Zbl 0864.65054 · doi:10.1137/S0036142993242344
[28] Balla, K.; März, R., Linear differential-algebraic equations of index 1 and their adjoints, Results Math., 37, 13-35 (2000) · Zbl 0963.34001 · doi:10.1007/BF03322509
[29] Balla, K.; März, R., A unified approach to linear differential-algebraic equations and their adjoints, J. Anal. Appl., 21, 3, 783-802 (2002) · Zbl 1024.34002
[30] Balla, K.; März, R., Linear boundary value problems for differential-algebraic equations, Miskolc Math. Notes, 5, 1, 3-18 (2004) · Zbl 1056.34001
[31] Barz, B.; Suschke, E., Numerische behandlung eines Algebro-Differentialgleichungssystems (1994), RZ-Mitteilungen: Humboldt-Universität, Behandlung, Berlin, RZ-Mitteilungen
[32] Bell, M.; Sargent, R., Optimal control of inequality constrained DAE systems, Comput. Chem. Eng., 24, 2385-2404 (2000) · doi:10.1016/S0098-1354(00)00566-4
[33] Biegler, L.; Campbell, S.; Mehrmann, V., Control and Optimization with Differential-Algebraic Constraints (2011), Philadelphia: SIAM, Philadelphia
[34] Bock, H.; Eich, E.; Schlöder, J.; Strehmel, K., Numerical solution of constrained least squares boundary value problems in differential-algebraic equations, Numerical Treatment of Differential Equations, NUMDIFF-4. Teubner Texte zur Mathematik (1987), Leipzig: Teubner, Leipzig
[35] Brenan, K.; Campbell, S.; Petzold, L., Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations (1989), New York: North Holland, New York · Zbl 0699.65057
[36] Brown, P.; Hindmarsh, A.; Petzold, L., Consistent initial condition calculation for differential-algebraic systems, SIAM J. Sci. Comput., 19, 5, 1495-1512 (1998) · Zbl 0915.65079 · doi:10.1137/S1064827595289996
[37] Callies, R.: Entwurfsoptimierung und optimale Steuerung. Differential-algebraische Systeme, Mehrgitter-Mehrzielansätze und numerische Realisierung. Habilitation, Technische Universität, München (2000)
[38] Clark, K. D.; Petzold, L. R., Numerical solution of boundary value problems in differential-algebraic systems, SIAM J. Sci. Stat. Comput., 10, 915-936 (1989) · Zbl 0677.65089 · doi:10.1137/0910053
[39] de Boor, C.; Swartz, B., Collocation at Gaussian points, SIAM J. Numer. Anal., 10, 582-606 (1973) · Zbl 0232.65065 · doi:10.1137/0710052
[40] de Hoog, F.; Weiss, R., Difference methods for boundary value problems with a singularity for the first kind, SIAM J. Numer. Anal., 13, 775-813 (1976) · Zbl 0372.65034 · doi:10.1137/0713063
[41] Degenhardt, A.: A collocation method for boundary value problems of transferable differential-algebraic equations. Preprint (Neue Folge) 182, Humboldt-Universität zu Berlin, Sektion Mathematik (1988)
[42] Degenhardt, A.; Griepentrog, E.; Hanke, M.; März, R., Collocation for transferable differential-algebraic equations, Berlin Seminar on Differential-Algebraic Equations, Seminarberichte, vol. 92-1, pp. 83-104. Fachbereich Mathematik (1992), Berlin: Humboldt-Universität zu, Berlin · Zbl 0743.34025
[43] Dick, A.; Koch, O.; März, R.; Weinmüller, E., Convergence of collocation schemes for boundary value problems in nonlinear index-1 DAEs with a singular point, Math. Comput., 82, 282, 893-918 (2013) · Zbl 1262.65092 · doi:10.1090/S0025-5718-2012-02637-8
[44] Dokchan, R.: Numerical integration of differential-algebraic equations with harmless critical points. Ph.D. thesis, Institute of Mathematics, Humboldt-University, Berlin (2011)
[45] Eich-Soellner, E.; Führer, C., Numerical Methods in Multibody Dynamics (1998), Stuttgart: B.G. Teubner, Stuttgart · Zbl 0899.70001 · doi:10.1007/978-3-663-09828-7
[46] Engl, H. W.; Hanke, M.; Neubauer, A.; Sabatier, P. C., Tikhonov regularization of nonlinear differential-algebraic equations, Inverse Methods in Action, 92-105 (1990), Berlin/Heidelberg: Springer, Berlin/Heidelberg · Zbl 0711.34018 · doi:10.1007/978-3-642-75298-8_12
[47] England, R.; Lamour, R.; Lopez-Estrada, J., Multiple shooting using a dichotomically stable integrator for solving DAEs, Appl. Numer. Math., 42, 117-131 (2002) · Zbl 0999.65082 · doi:10.1016/S0168-9274(01)00145-3
[48] Estévez Schwarz, D.; Lamour, R., The computation of consistent initial values for nonlinear index-2 differential-algebraic equations, Numer. Algorithms, 26, 1, 49-75 (2001) · Zbl 0973.65065 · doi:10.1023/A:1016696413810
[49] Estévez Schwarz, D., Lamour, R.: Monitoring singularities while integrating DAEs. In: Progress in Differential-Algebraic Equations. Descriptor 2013, pp. 73-96. Differential-Algebraic Equations Forum. Springer, Heidelberg (2014) · Zbl 1319.65076
[50] Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of properly stated DAEs using automatic differentiation. Numer. Algorithms (2015, to appear) · Zbl 1335.65067
[51] Franke, C.: Numerical methods for the investigation of periodic motions in multibody dynamics. A collocation approach. Ph.D. thesis, Universität Ulm. Shaker, Aachen (1998)
[52] Gear, C.W.: Maintaining solution invariants in the numerical solution of ODEs. SIAM J. Sci. Stat. Comput. 7, 734-743 · Zbl 0614.65076
[53] Gerdts, M., Direct shooting method for the numerical solution of higher-index DAE optimal control problems, J. Optim. Theory Appl., 117, 2, 267-294 (2003) · Zbl 1033.65046 · doi:10.1023/A:1023679622905
[54] Gerdts, M.; Ilchmann, A.; Reis, T., A survey on optimal control problems with differential-algebraic equations, Surveys in Differential-Algebraic Equations II (2015), Heidelberg: Springer, Heidelberg · Zbl 1305.65006
[55] Griepentrog, E., März, R.: Differential-Algebraic Equations and Their Numerical Treatment. Teubner-Texte zur Mathematik, vol. 88. BSB B.G. Teubner Verlagsgesellschaft, Leipzig (1986) · Zbl 0629.65080
[56] Hanke, M., On a least-squares collocation method for linear differential-algebraic equations, Numer. Math., 54, 79-90 (1988) · Zbl 0643.65042 · doi:10.1007/BF01403892
[57] Hanke, M.: Beiträge zur Regularisierung von Randwertaufgaben für Algebro-Differentialgleichungen mit höherem Index. Dissertation(B), Habilitation, Institut für Mathematik, Humboldt-Universität zu Berlin (1989)
[58] Hanke, M., On the regularization of index 2 differential-algebraic equations, J. Math. Anal. Appl., 151, 236-253 (1990) · Zbl 0722.34013 · doi:10.1016/0022-247X(90)90254-D
[59] Hanke, M., Asymptotic expansions for regularization methods of linear fully implicit differential-algebraic equations, Zeitschrift für Analysis und ihre Anwendungen, 13, 513-535 (1994) · Zbl 0805.34002
[60] Higueras, I.; März, R., Differential algebraic equations with properly stated leading term, Comput. Math. Appl., 48, 215-235 (2004) · Zbl 1068.34005 · doi:10.1016/j.camwa.2003.05.010
[61] Higueras, I.; März, R.; Tischendorf, C., Stability preserving integration of index-1 DAEs, Appl. Numer. Math., 45, 2-3, 175-200 (2003) · Zbl 1041.65065 · doi:10.1016/S0168-9274(02)00215-5
[62] Ho, M. D., A collocation solver for systems of boundary-value differential/algebraic equations, Comput. Chem. Eng., 7, 735-737 (1983) · doi:10.1016/0098-1354(83)85025-X
[63] Houska, B.; Diehl, M., A quadratically convergent inexact SQP method for optimal control of differential algebraic equations, Optim. Control Appl. Methods, 34, 396-414 (2013) · Zbl 1292.90223 · doi:10.1002/oca.2026
[64] Kalachev, L. V.; O’Malley, R. E., Boundary value problems for differential-algebraic equations, Numer. Funct. Anal. Optim., 16, 363-378 (1995) · Zbl 0828.34014 · doi:10.1080/01630569508816623
[65] Keller, H., Approximation methods for nonlinear problems with application to two-point boundary value problems, Math. Comput., 29, 464-474 (1975) · Zbl 0308.65039 · doi:10.1090/S0025-5718-1975-0371058-7
[66] Keller, H. B.; White, A. B. Jr, Difference methods for boundary value problems in ordinary differential equations, SIAM J. Numer. Anal., 12, 5, 791-802 (1975) · Zbl 0316.65017 · doi:10.1137/0712059
[67] Kiehl, M., Sensitivity analysis of ODEs and DAEs – theory and implementation guide, Optim. Methods Softw., 10, 803-821 (1999) · Zbl 0939.34003 · doi:10.1080/10556789908805742
[68] Koch, O., Asymptotically correct error estimation for collocation methods applied to singular boundary value problems, Numer. Math., 101, 143-164 (2005) · Zbl 1076.65073 · doi:10.1007/s00211-005-0617-2
[69] Koch, O.; Weinmüller, E., The convergence of shooting methods for singular boundary value problems, Math. Comput., 72, 241, 289-305 (2003) · Zbl 1013.65081 · doi:10.1090/S0025-5718-01-01407-7
[70] Koch, O.; Kofler, P.; Weinmüller, E., Initial value problems for systems of ordinary first and second order differential equations with a singularity of the first kind, Analysis, 21, 373-389 (2001) · Zbl 1029.34002 · doi:10.1524/anly.2001.21.4.373
[71] Koch, O., März, R., Praetorius, D., Weinmüller, E.: Collocation for solving DAEs with singularities. ASC Report 32/2007, Vienna University of Technology, Institute for Analysis and Scientific Computing (2007) · Zbl 1196.65134
[72] Koch, O.; März, R.; Praetorius, D.; Weinmüller, E., Collocation methods for index-1 DAEs with a singularity of the first kind, Math. Comput., 79, 269, 281-304 (2010) · Zbl 1196.65134 · doi:10.1090/S0025-5718-09-02267-4
[73] Kopelmann, A.: Ein Kollokationsverfahren für überführbare Algebro-Differentialbleichungen. Preprint (Neue Folge) 151, Humboldt-Universität zu Berlin, Sektion Mathematik (1987)
[74] Kunkel, P.; Mehrmann, V., Differential-Algebraic Equations - Analysis and Numerical Solution (2006), Zürich: EMS Publishing House, Zürich · Zbl 1095.34004 · doi:10.4171/017
[75] Kunkel, P.; Stöver, R., Symmetric collocation methods for linear differential-algebraic boundary value problems, Numer. Math., 91, 475-501 (2002) · Zbl 1003.65093 · doi:10.1007/s002110100315
[76] Kunkel, P.; Mehrmann, V.; Stöver, R., Symmetric collocation methods for unstructured nonlinear differential-algebraic equations of arbitrary index, Numer. Math., 98, 277-304 (2004) · Zbl 1061.65075 · doi:10.1007/s00211-004-0534-9
[77] Lamour, R., A shooting method for fully implicit index-2 differential-algebraic equations, SIAM J. Sci. Comput., 18, 1, 94-114 (1997) · Zbl 0868.65048 · doi:10.1137/S1064827595287274
[78] Lamour, R.: Bestimmung optimaler Integrationsrichtungen beim Mehrfachschießverfahren zur Lösung von Zwei-Punkt-Randwertproblemen (1984). Wiss. Beitr., Martin-Luther-University Halle Wittenberg 1984/24(M 33), 66-70 (1984) · Zbl 0548.65066
[79] Lamour, R.: A well-posed shooting method for transferable DAEs. Numer. Math. 59 (1991) · Zbl 0723.65060
[80] Lamour, R.: Oscillations in differential-algebraic equations. In: Seminarbericht Nr. 92-1. Fachbereich Mathematik der Humboldt, Universität zu Berlin (1992) · Zbl 0743.34011
[81] Lamour, R., Index determination and calculation of consistent initial values for DAEs, Comput. Math. Appl., 50, 2, 1125-1140 (2005) · Zbl 1089.65082 · doi:10.1016/j.camwa.2005.08.014
[82] Lamour, R., März, R.: Detecting structures in differential-algebraic equations: computational aspects. J. Comput. Appl. Math. 236(16), 4055-4066 (2012). Special Issue: 40 years of Numerical Math · Zbl 1246.65138
[83] Lamour, R.; Mazzia, F., Computation of consistent initial values for properly stated index-3 DAEs, BIT Numer. Math., 49, 161-175 (2009) · Zbl 1162.65376 · doi:10.1007/s10543-009-0212-5
[84] Lamour, R.; März, R.; Winkler, R., How floquet theory applies to index-1 differential-algebraic equations, J. Appl. Math., 217, 2, 372-394 (1998) · Zbl 0903.34002
[85] Lamour, R.; März, R.; Winkler, R., Stability of periodic solutions of index-2 differential algebraic systems, J. Math. Anal. Appl., 279, 475-494 (2003) · Zbl 1028.34002 · doi:10.1016/S0022-247X(03)00024-6
[86] Lamour, R.; März, R.; Tischendorf, C.; Ilchman, A.; Reis, T., Differential-algebraic equations: a projector based analysis, Differential-Algebraic Equations Forum (2013), Berlin/Heidelberg/New York/Dordrecht/London: Springer, Berlin/Heidelberg/New York/Dordrecht/London · Zbl 1276.65045
[87] Lentini, M.; März, R., Conditioning and dichotomy in differential-algebraic equations, SIAM J. Numer. Anal., 27, 6, 1519-1526 (1990) · Zbl 0732.65062 · doi:10.1137/0727088
[88] Lentini, M.; März, R., The condition of boundary value problems in transferable differential-algebraic equations, SIAM J. Numer. Anal., 27, 4, 1001-1015 (1990) · Zbl 0702.65075 · doi:10.1137/0727058
[89] März, R., On difference and shooting methods for boundary value problems in differential-algebraic equations, Zeitschrift für Angewandte Mathematik und Mechanik, 64, 11, 463-473 (1984) · Zbl 0587.65056 · doi:10.1002/zamm.19840641108
[90] März, R., On correctness and numerical treatment of boundary value problems in DAEs, Zhurnal Vychisl. Matem. i Matem. Fiziki, 26, 1, 50-64 (1986) · Zbl 0602.65062
[91] März, R.: Numerical methods for differential-algebraic equations. Acta Numer. 141-198 (1992) · Zbl 0769.65044
[92] März, R., On linear differential-algebraic equations and linearizations, Appl. Numer. Math., 18, 267-292 (1995) · Zbl 0840.65071 · doi:10.1016/0168-9274(95)00058-3
[93] März, R.: Managing the drift-off in numerical index-2 differential algebraic equations by projected defect corrections. Technical Report 96-32, Humboldt University, Institute of Mathematics (1996)
[94] März, R.: Notes on linearization of differential-algebraic equations and on optimization with differential-algebraic constraints. Technical Report 2011-16, Humboldt-Universität zu Berlin, Institut für Mathematik (2011). http://www2.mathematik.hu-berlin.de/publ/pre/2011/M-11-16.html
[95] März, R.; Biegler, L. T.; Campbell, S. L.; Mehrmann, V., Notes on linearization of DAEs and on optimization with differential-algebraic constraints, Control and Optimization with Differential-Algebraic Constraints. Advances in Design and Control, 37-58 (2012), Philadelphia: SIAM, Philadelphia · Zbl 1317.49034 · doi:10.1137/9781611972252.ch3
[96] März, R.; Ilchmann, A.; Reis, T., Differential-algebraic equations from a functional-analytic viewpoint: a survey, Surveys in Differential-Algebraic Equations II (2015), Heidelberg: Springer, Heidelberg · Zbl 1305.65006
[97] März, R.; Riaza, R., Linear differential-algebraic equations with properly leading term: a-critical points, Math. Comput. Model. Dyn. Syst., 13, 291-314 (2007) · Zbl 1132.34005 · doi:10.1080/13873950600883428
[98] März, R.; Weinmüller, E. B., Solvability of boundary value problems for systems of singular differential-algebraic equations, SIAM J. Math. Anal., 24, 1, 200-215 (1993) · Zbl 0767.34003 · doi:10.1137/0524012
[99] Moszyński, K., A method of solving the boundary value problem for a system of linear ordinary differential equations, Algorithmy, 11, 3, 25-43 (1964) · Zbl 0142.11801
[100] Petry, T., On the stability of the Abramov transfer for differential-algebraic equations of index 1, SIAM J. Numer. Anal., 35, 1, 201-216 (1998) · Zbl 0916.65085 · doi:10.1137/S0036142994266662
[101] Petry, T.: Realisierung des Newton-Kantorovich-Verfahrens für nichtlineare Algebro-Differentialgleichungen mittels Abramov-Transfer. Ph.D. thesis, Humboldt-Universität zu, Berlin. Logos, Berlin (1998) · Zbl 0905.65090
[102] Rabier, P.; Rheinboldt, W.; Ciarlet, P. G., Theoretical and numerical analysis of differential-algebraic equations, Handbook of Numerical Analysis, vol. VIII. Techniques of Scientific Computing (Part 4), 183-540 (2002), Amsterdam: North Holland/Elsevier, Amsterdam · Zbl 1007.65057
[103] Riaza, R., Differential-Algebraic Systems (2008), World Scientific, Singapore: Analytical Aspects and Circuit Applications, World Scientific, Singapore · Zbl 1184.34004 · doi:10.1142/6746
[104] Riaza, R.; Ilchmann, A.; Reis, T., DAEs in Circuit Modelling: a survey, Surveys in Differential-Algebraic Equations I (2013), Heidelberg: Differential-Algebraic Equations Forum. Springer, Heidelberg · Zbl 1322.94123
[105] Riaza, R.; März, R., Linear index-1 DAEs: regular and singular problems, Acta Appl. Math., 84, 29-53 (2004) · Zbl 1082.34002 · doi:10.1023/B:ACAP.0000045308.01276.41
[106] Schulz, V. H.; Bock, H. G.; Steinbach, M. C., Exploiting invariants in the numerical solution of multipoint boundary value problems for DAE, SIAM J. Sci. Comput., 19, 440-467 (1998) · Zbl 0947.65096 · doi:10.1137/S1064827594261917
[107] Selting, P.; Zheng, Q., Numerical stability analysis of oscillating integrated circuits, J. Comput. Appl. Math., 82, 367-378 (1997) · Zbl 0887.65079 · doi:10.1016/S0377-0427(97)00087-3
[108] Shampine, L., Conservative laws and the numerical solution of ODEs, Comput. Math. Appl., 12, 1287-1296 (1986) · Zbl 0641.65057 · doi:10.1016/0898-1221(86)90253-1
[109] Simeon, B., Computational flexible multibody dynamics (2013), A Differential-Algebraic Approach. Differential-Algebraic Equations Forum. Springer, Heidelberg: In, A Differential-Algebraic Approach. Differential-Algebraic Equations Forum. Springer, Heidelberg · Zbl 1279.70002 · doi:10.1007/978-3-642-35158-7
[110] Stetter, H., The defect correction principle and discretization methods, Numer. Math., 29, 425-443 (1978) · Zbl 0362.65052 · doi:10.1007/BF01432879
[111] Stöver, R.: Numerische Lösung von linearen differential-algebraischen Randwertproblemen. Ph.D. thesis, Universität Bremen. Doctoral thesis, Logos, Berlin (1999) · Zbl 0922.65062
[112] Trenn, S.; Ilchmann, A.; Reis, T., Solution concepts for linear DAEs: a survey, Surveys in Differential-Algebraic Equations I, 137-172 (2013), Heidelberg: Springer, Heidelberg · Zbl 1277.34010 · doi:10.1007/978-3-642-34928-7_4
[113] Wernsdorf, B.: Ein Kollokationsverfahren zur numerischen Bestimmung periodischer Lösungen von nichtlinearen algebro-differentialgleichungen. Ph.D. thesis, Sektion Mathematik, Humboldt-Universität zu Berlin (1984)
[114] Wijckmans, P.M.E.J.: Conditioning of differential-algebraic equations and numerical solutions of multibody dynamics. Ph.D. thesis, Technische Universiteit, Eindhoven (1996) · Zbl 0844.34008
[115] Zadunaisky, P., On the estimation of errors propagated in the numerical integration of ODEs, Numer. Math., 27, 21-39 (1976) · Zbl 0324.65035 · doi:10.1007/BF01399082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.