×

Diagnosis of singular points of properly stated DAEs using automatic differentiation. (English) Zbl 1335.65067

The authors propagate a diagnosis tool to detect and analyze singular points of differential-algebraic equations (DAEs) up to tractability index 2. The diagnosis tool is based on Taylor expansions of DAEs. The condition number of the matrix of the linearized DAEs can be used to detect hidden singularities. A drawback in principle is the costly computation of the matrix sequence along the solution. Here the authors propagate an implementation where it suffices to compute two projectors and use information provided by automatic differentiation. Finally, some numerical examples are presented.

MSC:

65L80 Numerical methods for differential-algebraic equations
34A09 Implicit ordinary differential equations, differential-algebraic equations

Software:

AlgoPy
Full Text: DOI

References:

[1] Deuflhard, P., Bornemann, F.: Numerical mathematics 2. Ordinary differential equations. (Numerische Mathematik 2. Gewöhnliche Differentialgleichungen.) 4th revised and augmented ed. de Gruyter Studium. Berlin (2013) · Zbl 1273.65001
[2] Estévez Schwarz, D.: Consistent initialization for index-2 differential algebraic equations and its application to circuit simulation. PhD thesis, Berlin: Humboldt-University, Mathematisch-Naturwissenschaftliche Fakultät II, http://edoc.hu-berlin.de/docviews/abstract.php?id=10218 (2000) · Zbl 1021.65042
[3] Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of structured DAEs using automatic differentiation. Numerical Algorithms (2014). doi:10.1007/s11075-014-9919-8 · Zbl 1322.65082
[4] Estévez Schwarz, D., Lamour, R.: Progress in Differential-Algebraic Equations, Deskriptor 2013, Differential-Algebraic Equations Forum. Springer. In: Schöps, S., Bartel, A., Günther, M., Ter Maten, E.J.W., Müller, P.C. (eds.) (2014) · Zbl 0973.65065
[5] Estévez Schwarz, D., Lamour, R.: Projector based integration of DAEs with the Taylor series method using automatic differentiation. J. Comput. Appl. Math. 262, 62-72 (2014) · Zbl 1301.65087 · doi:10.1016/j.cam.2013.09.018
[6] Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins University Press, Baltimore and London (1996) · Zbl 0865.65009
[7] Jansen, L., Tischendorf, C.: Private communication
[8] Lamour, R., März, R., Tischendorf, C.: Differential-algebraic equations: A projector based analysis. Differential-Algebraic Equations Forum 1. Springer, Berlin (2013) · Zbl 1276.65045 · doi:10.1007/978-3-642-27555-5
[9] Sieber, J.: Local error control for general index-1 and index-2 differential-algebraic equations. Technical Report 21, Institut für Mathematik, Humboldt-Universität zu Berlin. http://www2.math.hu-berlin.de/publ/pre/1997/P-97-21.ps (1997)
[10] Silvester, J.R.: Determinants of block matrices. Math. Gaz. 84(501), 460-467 (2000) · doi:10.2307/3620776
[11] Tischendorf, C.: Solution of index-2-DAEs and its application in circuit simulation. PhD thesis, Humboldt-University zu Berlin 1996. appeared in Logos-Verlag Berlin (1996)
[12] Walter, S.F., Lehmann, L.: Algorithmic differentiation in Python with AlgoPy. J. Comput. Sci. 4(5), 334-344 (2013) · doi:10.1016/j.jocs.2011.10.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.