×

A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method. (English) Zbl 1443.65189

Summary: A new numerical algorithm has been investigated for solving time fractional reaction-subdiffusion equation. The fractional derivative of the considered equation is described in the Riemann-Liouville sense. Firstly, we discrete the temporal dimension of the considered model using a finite difference scheme. A central difference scheme has been applied to discrete the first time derivative and then for discretizing the fractional integral term a difference scheme has been employed with convergence order \(\mathcal O(\tau^{1+\gamma})\). Moreover, to achieve a full discretization scheme a type of meshless method has been improved that is known as element free Galerkin (EFG) method. The EFG method for integration uses a background mesh. This method is based on the Galerkin weak form in which the test and trial functions are shape functions of moving least squares (MLS) approximation. Since the shape functions of traditional MLS lack the Kronecker \(\delta\) property, essential boundary conditions of a boundary value problem can not be directly computed and other methods must be employed for this issue. To this end, a new class of MLS shape functions has been applied that is called shape functions of interpolating MLS. The new shape function has the mentioned property. In the EFG method, calculating the appeared two-dimensional integrals is a basic issue. In this research work, the alternating direction implicit approach is combined with the element free Galerkin method. Then, using the new proposed method, the two-dimensional integrals on rectangular domain will be changed to simple one-dimensional integrals. We prove that the new numerical algorithm is unconditionally stable and also we obtain an error bound for the new procedure using the energy method. Numerical examples are reported which demonstrate the theoretical results and the efficiency of proposed scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Zhang, X.; Huang, P.; Feng, X.; Wei, L., Finite element method for two-dimensional time-fractional Tricomi-type equations, Numer. Methods Partial Differential Equations, 29, 1081-1096 (2013) · Zbl 1276.65060
[2] Oldham, K. B.; Spanier, J., The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order (1974), Academic Press · Zbl 0292.26011
[3] Podulbny, I., Fractional Differential Equations (1999), Academic Press: Academic Press New York · Zbl 0924.34008
[4] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37, R161-208 (2004) · Zbl 1075.82018
[5] Bagley, R.; Torvik, P., A theoretical basis for the application of fractional calculus to viscoelasticity, J. Rheol., 27, 201-210 (1983) · Zbl 0515.76012
[6] Diethelm, K.; Ford, N. J., Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229-248 (2002) · Zbl 1014.34003
[7] Wess, W., The fractional diffusion equation, J. Math. Phys., 27, 2782-2785 (1996) · Zbl 0632.35031
[8] Saadatmandi, A.; Dehghan, M., A new operational matrix for solving fractional-order differential equations, Comput. Math. Appl., 59, 1326-1336 (2010) · Zbl 1189.65151
[9] Liao, H. L.; Zhang, Y. N.; Zhao, Y.; Shi, H. S., Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractional subdiffusion equations, J. Sci. Comput., 61, 629-648 (2014) · Zbl 1339.65150
[10] Henry, B. I.; Wearne, S. L., Fractional reaction-diffusion, Physica A, 276, 448-455 (2000)
[11] Yuste, S. B.; Acedo, L., An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42, 5, 1862-1874 (2005) · Zbl 1119.65379
[12] Chen, C. M.; Liu, F.; Turner, I.; Anh, V., A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227, 2, 886-897 (2007) · Zbl 1165.65053
[13] Baeumer, B.; Kovacs, M.; Meerschaert, M. M., Numerical solutions for fractional reaction-diffusion equations, Comput. Math. Appl., 55, 2212-2226 (2008) · Zbl 1142.65422
[14] Zhuang, P.; Liu, F.; Anh, V.; Turner, I., Stability and convergence of an implicit numerical method for the nonlinear fractional reaction-subdiffusion process, IMA J. Appl. Math., 74, 1-22 (2005)
[15] Gao, G. H.; Sun, Z. Z., Compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230, 586-595 (2011) · Zbl 1211.65112
[16] Li, C. P.; Ding, H., Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 38, 3802-3821 (2014) · Zbl 1429.65188
[17] Zeng, F.; Liu, F.; Li, C. P.; Burrage, K.; Turner, I.; Anh, V., A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation, SIAM J. Numer. Anal., 52, 2599-2622 (2014) · Zbl 1382.65349
[18] Zeng, F.; Li, C. P.; Liu, F., High-order explicit-implicit numerical methods for nonlinear anomalous diffusion equations, Eur. Phys. J. Spec. Top., 222, 1885-1900 (2013)
[19] Zeng, F.; Ma, H.; Zhao, T., Alternating direction implicit Legendre spectral element method for Schrödinger equations, J. Shanghai Univ. Nat. Sci. Ed., 6, 006 (2011)
[20] Zeng, F.; Li, C. P.; Liu, F.; Turner, I., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35, A2976-A3000 (2013) · Zbl 1292.65096
[21] Li, C. P.; Zeng, F. H., Numerical Methods for Fractional Calculus (2015), Chapman and Hall/CRC: Chapman and Hall/CRC New York · Zbl 1326.65033
[22] Chen, A.; Li, C. P., A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions, Int. J. Comput. Math., 1-26 (2014)
[23] Zhang, Y. N.; Sun, Z. Z., Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation, J. Sci. Comput., 59, 104-128 (2014) · Zbl 1304.65208
[24] Zhang, Y. N.; Sun, Z. Z.; Wu, H. W., Error estimate of Crank-Nicolson-tape difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49, 2302-2322 (2011) · Zbl 1251.65132
[25] Zhang, Y. N.; Sun, Z. Z.; Zhao, X., Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50, 1535-1555 (2012) · Zbl 1251.65126
[26] Zhang, Y. N.; Sun, Z. Z., Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys., 230, 8713-8728 (2011) · Zbl 1242.65174
[27] Zhang, Y. N.; Sun, Z. Z., Error analysis of a compact ADI scheme for the 2D fractional subdiffusion equation, J. Sci. Comput., 59, 104-128 (2014) · Zbl 1304.65208
[28] Liao, H. L.; Sun, Z. Z., Maximum norm error bounds of ADI and compact ADI methods for solving parabolic equations, Numer. Methods Partial Differential Equations, 26, 37-60 (2010) · Zbl 1196.65154
[29] Liao, H. L.; Sun, Z. Z.; Shi, H. S.; Wang, T. C., Convergence of compact ADI method for solving linear Schrödinger equations, Numer. Methods Partial Differential Equations, 28, 1598-1619 (2012) · Zbl 1259.65135
[30] Yu, B.; Jiang, X.; Xu, H., A novel compact numerical method for solving the two-dimensional non-linear fractional reaction-subdiffusion equation, Numer. Algorithms, 68, 923-950 (2015) · Zbl 1314.65114
[31] Cao, J.; Li, C. P.; Chen, Y. Q., Compact difference method for solving the fractional reaction-subdiffusion equation with Neumann boundary value condition, Int. J. Comput. Math., 92, 167-180 (2015) · Zbl 1308.65140
[32] Ding, H.; Li, C. P., Mixed spline function method for reaction-subdiffusion equations, J. Comput. Phys., 242, 103-123 (2013) · Zbl 1297.65091
[33] Wang, Y. M., Maximum norm error estimates of ADI methods for a two-dimensional fractional subdiffusion equation, Adv. Math. Phys., 2013 (2013), Article ID 293706, 10 pages · Zbl 1291.65275
[34] Huang, H.; Cao, X., Numerical method for two-dimensional fractional reaction subdiffusion equation, Eur. Phys. J. Spec. Top., 222, 1961-1973 (2013)
[35] Bhrawy, A. H.; Zaky, M. A., A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations, J. Comput. Phys., 281, 876-895 (2015) · Zbl 1352.65386
[36] Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S., A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations, J. Comput. Phys., 293, 142-156 (2015) · Zbl 1349.65504
[37] Zhao, X.; Sun, Z. Z., Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium, J. Sci. Comput., 62, 1-25 (2014)
[38] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method, J. Comput. Appl. Math., 280, 14-36 (2015) · Zbl 1305.65211
[39] Zhao, X.; Xu, Q., Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl. Math. Model., 38, 3848-3859 (2014) · Zbl 1429.65210
[40] Li, L.; Xu, D.; Luo, M., Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255, 471-485 (2013) · Zbl 1349.65456
[41] Li, L.; Xu, D., Alternating direction implicit Galerkin finite element method for the two-dimensional time fractional evolution equation, Numer. Math. Theory Methods Appl., 7, 41-57 (2014) · Zbl 1313.65266
[42] Li, L.; Xu, D., Alternating direction implicit-Euler method for the two-dimensional fractional evolution equation, J. Comput. Phys., 236, 157-168 (2013) · Zbl 1286.65101
[43] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul., 71, 16-30 (2006) · Zbl 1089.65085
[44] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[45] Chung, H. J.; Belytschko, T., An error estimate in the EFG method, Comput. Mech., 21, 91-100 (1998) · Zbl 0910.73060
[46] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[47] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comp., 37, 141-158 (1981) · Zbl 0469.41005
[48] Cheng, Y.; Bai, F. N.; Peng, M. J., A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl. Math. Model., 38, 5187-5197 (2014) · Zbl 1449.74196
[49] Gu, L., Moving Kriging interpolation and element-free Galerkin method, Internat. J. Numer. Methods Engrg., 56, 1-11 (2003) · Zbl 1062.74652
[50] Dai, B. D.; Cheng, J.; Zheng, B. J., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl. Math. Comput., 219, 10044-10052 (2013) · Zbl 1307.80008
[51] Dai, B. D.; Cheng, J.; Zheng, B. J., A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis, Int. J. Appl. Mech., 5, 1, 1350011-1350021 (2013)
[52] Li, X. G.; Dai, B. D.; Wang, L. H., A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin. Phys. B, 19, 12, 120202-120207 (2010)
[53] Zheng, B.; Dai, B., A meshless local moving Kriging method for two-dimensional solids, Appl. Math. Comput., 218, 563-573 (2011) · Zbl 1275.74033
[54] Cheng, Y.; Li, J., A meshless method with complex variables for elasticity, Acta Phys. Sin., 54, 4463-4471 (2005) · Zbl 1202.74163
[55] Cheng, Y.; Peng, M., Boundary element free method for elastodynamics, Sci. China G, 48, 641-657 (2005)
[56] Peng, M. J.; Li, R. X.; Cheng, Y. M., Analyzing three-dimensional viscoelasticity problems via the improved element-free Galerkin (IEFG) method, Eng. Anal. Bound. Elem., 40, 104-113 (2014) · Zbl 1297.74153
[57] Zhang, L. W.; Deng, Y. J.; Liew, K. M.; Cheng, Y. M., The improved complex variable element free Galerkin method for two-dimensional Schrödinger equation, Comput. Math. Appl., 68, 1093-1106 (2014) · Zbl 1367.35141
[58] Zhang, L. W.; Deng, Y. J.; Liew, K. M., An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Bound. Elem., 40, 181-188 (2014) · Zbl 1297.65123
[59] Zhang, L. W.; Li, D. M.; Liew, K. M., An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method, Eng. Anal. Bound. Elem., 54, 39-46 (2015) · Zbl 1403.74137
[60] Zhang, L. W.; Liew, K. M., An element-free based solution for nonlinear Schrödinger equations using the ICVMLS-Ritz method, Appl. Math. Comput., 249, 333-345 (2014) · Zbl 1339.65183
[61] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Bound. Elem., 36, 873-880 (2012) · Zbl 1352.65539
[62] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method Part I: stress recovery and a posteriori error estimation, Comput. Struct., 82, 413-428 (2004)
[63] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method Part II: adaptive refinement, Comput. Struct., 82, 429-443 (2004)
[64] Zhang, Z.; Liew, K. M.; Cheng, Y., Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems, Eng. Anal. Bound. Elem., 32, 100-107 (2008) · Zbl 1244.74204
[65] Dehghan, M.; Shokri, A., Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions, J. Comput. Appl. Math., 230, 400-410 (2009) · Zbl 1168.65398
[66] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math. Comput. Simul., 79, 700-715 (2008) · Zbl 1155.65379
[67] Dehghan, M.; Ghesmati, A., Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun., 181, 772-786 (2010) · Zbl 1205.65267
[68] Dehghan, M.; Salehi, R., The numerical solution of the non-linear integro-differential equations based on the meshless method, J. Comput. Appl. Math., 236, 2367-2377 (2012) · Zbl 1243.65154
[69] Mirzaei, D.; Schaback, R.; Dehghan, M., On generalized moving least squares and diffuse derivatives, IMA J. Numer. Anal., 32, 983-1000 (2012) · Zbl 1252.65037
[70] Zhang, N.; Deng, W.; Wu, Y., Finite difference/element method for a two-dimensional modified fractional diffusion equation, Adv. Appl. Math. Mech., 4, 496-518 (2012) · Zbl 1262.65108
[71] Lin, Y.; Li, X.; Xu, C., Finite difference/spectral approximations for the fractional cable equation, Math. Comp., 80, 1369-1396 (2011) · Zbl 1220.78107
[72] Liu, F.; Zhuang, P. H.; Burrage, K., Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64, 2990-3007 (2012) · Zbl 1268.65124
[73] Cheng, R.; Cheng, Y., Error estimates for the finite point method, Appl. Numer. Math., 58, 884-898 (2008) · Zbl 1145.65086
[74] Wang, J. F.; Sun, F. X.; Cheng, Y. M.; Huang, A. X., Error estimates for the interpolating moving least-squares method, Appl. Math. Comput., 245, 321-342 (2014) · Zbl 1335.65018
[75] Dehghan, M.; Mohebbi, A., High-order compact boundary value method for the solution of unsteady convection-diffusion problems, Math. Comput. Simul., 79, 683-699 (2008) · Zbl 1155.65075
[76] Mohebbi, A.; Dehghan, M., The use of compact boundary value method for the solution of two-dimensional Schrödinger equation, J. Comput. Appl. Math., 225, 124-134 (2009) · Zbl 1159.65081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.