×

Maximum norm error estimates of ADI methods for a two-dimensional fractional subdiffusion equation. (English) Zbl 1291.65275

Summary: This paper is concerned with two alternating direction implicit (ADI) finite difference methods for solving a two-dimensional fractional subdiffusion equation. An explicit error estimate for each of the two methods is provided in the discrete maximum norm. It is shown that the methods have the same order as their truncation errors with respect to the discrete maximum norm. Numerical results are given to confirm the theoretical analysis results.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs

Software:

FODE

References:

[1] I. Podlubny, Fractional Differential Equations, Academic Press, New York, NY, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[2] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, “Discrete random walk models for space-time fractional diffusion,” Chemical Physics, vol. 284, pp. 521-541, 2002. · Zbl 0986.82037
[3] B. I. Henry and S. L. Wearne, “Fractional reaction-diffusion,” Physica A, vol. 276, no. 3-4, pp. 448-455, 2000. · doi:10.1016/S0378-4371(99)00469-0
[4] M. Giona and H. E. Roman, “Fractional diffusion equation for transport phenomenna in random media,” Physica A, vol. 185, pp. 87-97, 1992.
[5] T. Kosztolowicz, “Subdiffusion in a system with a thick membrane,” Journal of Membrane Science, vol. 320, pp. 492-499, 2008.
[6] R. Metzler, E. Barkai, and J. Klafter, “Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach,” Physical Review Letters, vol. 82, pp. 3563-3567, 1999.
[7] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, p. 77, 2000. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[8] R. Metzler and J. Klafter, “Boundary value problems for fractional diffusion equations,” Physica A, vol. 278, no. 1-2, pp. 107-125, 2000. · Zbl 0984.82032 · doi:10.1016/S0378-4371(99)00503-8
[9] M. Li, “Approximating ideal filters by systems of fractional order,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 365054, 6 pages, 2012. · Zbl 1233.92048 · doi:10.1155/2012/365054
[10] M. Li, S. C. Lim, and S. Chen, “Exact solution of impulse response to a class of fractional oscillators and its stability,” Mathematical Problems in Engineering, vol. 2011, Article ID 657839, 9 pages, 2011. · Zbl 1202.34018 · doi:10.1155/2011/657839
[11] M. Li and W. Zhao, “Essay on fractional Riemann-Liouville integral operator versus Mikusinski’s,” Mathematical Problems in Engineering, vol. 2013, Article ID 635412, 3 pages, 2013. · Zbl 1299.26012 · doi:10.1155/2013/635412
[12] M. Li and W. Zhao, “Solving the Abel’s type integral equation with the Mikusinski’s operator of fractional order,” Advances in Mathematical Physics, vol. 2013, Article ID 806984, 4 pages, 2013. · Zbl 1269.45003 · doi:10.1155/2013/806984
[13] J. A. Tenreiro MacHado, M. F. Silva, R. S. Barbosa et al., “Some applications of fractional calculus in engineering,” Mathematical Problems in Engineering, vol. 2010, Article ID 639801, 34 pages, 2010. · Zbl 1191.26004 · doi:10.1155/2010/639801
[14] H. Sun, Y. Chen, and W. Chen, “Random-order fractional differential equation models,” Signal Processing, vol. 91, no. 3, pp. 525-530, 2011. · Zbl 1203.94056 · doi:10.1016/j.sigpro.2010.01.027
[15] C. Cattani, “Fractional calculus and Shannon wavelet,” Mathematical Problems in Engineering, vol. 2012, Article ID 502812, 26 pages, 2012. · Zbl 1264.42016 · doi:10.1155/2012/502812
[16] C. Cattani, G. Pierro, and G. Altieri, “Entropy and multifractality for the myeloma multiple TET 2 gene,” Mathematical Problems in Engineering, vol. 2012, Article ID 193761, 14 pages, 2012. · Zbl 1264.92017 · doi:10.1155/2012/193761
[17] B. Baeumer, M. Kovács, and M. M. Meerschaert, “Numerical solutions for fractional reaction-diffusion equations,” Computers & Mathematics with Applications, vol. 55, no. 10, pp. 2212-2226, 2008. · Zbl 1142.65422 · doi:10.1016/j.camwa.2007.11.012
[18] C.-M. Chen and F. Liu, “A numerical approximation method for solving a three-dimensional space Galilei invariant fractional advection-diffusion equation,” Journal of Applied Mathematics and Computing, vol. 30, no. 1-2, pp. 219-236, 2009. · Zbl 1177.26009 · doi:10.1007/s12190-008-0168-7
[19] C.-M. Chen, F. Liu, I. Turner, and V. Anh, “A Fourier method for the fractional diffusion equation describing sub-diffusion,” Journal of Computational Physics, vol. 227, no. 2, pp. 886-897, 2007. · Zbl 1165.65053 · doi:10.1016/j.jcp.2007.05.012
[20] C.-M. Chen, F. Liu, V. Anh, and I. Turner, “Numerical schemes with high spatial accuracy for a variable-order anomalous subdiffusion equation,” SIAM Journal on Scientific Computing, vol. 32, no. 4, pp. 1740-1760, 2010. · Zbl 1217.26011 · doi:10.1137/090771715
[21] C.-m. Chen, F. Liu, and K. Burrage, “Finite difference methods and a Fourier analysis for the fractional reaction-subdiffusion equation,” Applied Mathematics and Computation, vol. 198, no. 2, pp. 754-769, 2008. · Zbl 1144.65057 · doi:10.1016/j.amc.2007.09.020
[22] A. Mohebbi, M. Abbaszadeh, and M. Dehghan, “A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term,” Journal of Computational Physics, vol. 240, pp. 36-48, 2013. · Zbl 1287.65064
[23] G.-H. Gao, Z.-Z. Sun, and Y.-N. Zhang, “A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions,” Journal of Computational Physics, vol. 231, no. 7, pp. 2865-2879, 2012. · Zbl 1242.65160 · doi:10.1016/j.jcp.2011.12.028
[24] T. A. M. Langlands and B. I. Henry, “The accuracy and stability of an implicit solution method for the fractional diffusion equation,” Journal of Computational Physics, vol. 205, no. 2, pp. 719-736, 2005. · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[25] Y. Lin and C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation,” Journal of Computational Physics, vol. 225, no. 2, pp. 1533-1552, 2007. · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[26] F. Liu, C. Yang, and K. Burrage, “Numerical method and analytic technique of the modified anomalous subdiffusion equation with a nonlinear source term,” Journal of Computational and Applied Mathematics, vol. 231, no. 1, pp. 160-176, 2009. · Zbl 1170.65107 · doi:10.1016/j.cam.2009.02.013
[27] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12-20, 2007. · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[28] C.-M. Chen, F. Liu, V. Anh, and I. Turner, “Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation,” Mathematics of Computation, vol. 81, no. 277, pp. 345-366, 2012. · Zbl 1241.65077 · doi:10.1090/S0025-5718-2011-02447-6
[29] Q. Liu, F. Liu, I. Turner, and V. Anh, “Numerical simulation for the 3D seepage flow with fractional derivatives in porous media,” IMA Journal of Applied Mathematics, vol. 74, no. 2, pp. 201-229, 2009. · Zbl 1169.76427 · doi:10.1093/imamat/hxn044
[30] C. Tadjeran, M. M. Meerschaert, and H.-P. Scheffler, “A second-order accurate numerical approximation for the fractional diffusion equation,” Journal of Computational Physics, vol. 213, no. 1, pp. 205-213, 2006. · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[31] S. B. Yuste, “Weighted average finite difference methods for fractional diffusion equations,” Journal of Computational Physics, vol. 216, no. 1, pp. 264-274, 2006. · Zbl 1094.65085 · doi:10.1016/j.jcp.2005.12.006
[32] S. B. Yuste and L. Acedo, “An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations,” SIAM Journal on Numerical Analysis, vol. 42, no. 5, pp. 1862-1874, 2005. · Zbl 1119.65379 · doi:10.1137/030602666
[33] P. Zhuang, F. Liu, V. Anh, and I. Turner, “New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation,” SIAM Journal on Numerical Analysis, vol. 46, no. 2, pp. 1079-1095, 2008. · Zbl 1173.26006 · doi:10.1137/060673114
[34] P. Zhuang, F. Liu, V. Anh, and I. Turner, “Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term,” SIAM Journal on Numerical Analysis, vol. 47, no. 3, pp. 1760-1781, 2009. · Zbl 1204.26013 · doi:10.1137/080730597
[35] J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications,” Physics Reports, vol. 195, no. 4-5, pp. 127-293, 1990. · doi:10.1016/0370-1573(90)90099-N
[36] P. Zhuang, F. Liu, V. Anh, and I. Turner, “Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process,” IMA Journal of Applied Mathematics, vol. 74, no. 5, pp. 645-667, 2009. · Zbl 1187.35271 · doi:10.1093/imamat/hxp015
[37] Y. T. Gu, P. Zhuang, and F. Liu, “An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation,” Computer Modeling in Engineering & Sciences, vol. 56, no. 3, pp. 303-333, 2010. · Zbl 1231.65178 · doi:10.3970/cmes.2010.056.303
[38] M. Cui, “Compact finite difference method for the fractional diffusion equation,” Journal of Computational Physics, vol. 228, no. 20, pp. 7792-7804, 2009. · Zbl 1179.65107 · doi:10.1016/j.jcp.2009.07.021
[39] Y.-N. Zhang, Z.-Z. Sun, and H.-W. Wu, “Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation,” SIAM Journal on Numerical Analysis, vol. 49, no. 6, pp. 2302-2322, 2011. · Zbl 1251.65132 · doi:10.1137/100812707
[40] G.-h. Gao and Z.-z. Sun, “A compact finite difference scheme for the fractional sub-diffusion equations,” Journal of Computational Physics, vol. 230, no. 3, pp. 586-595, 2011. · Zbl 1211.65112 · doi:10.1016/j.jcp.2010.10.007
[41] X. Li and C. Xu, “A space-time spectral method for the time fractional diffusion equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 3, pp. 2108-2131, 2009. · Zbl 1193.35243 · doi:10.1137/080718942
[42] X. Zhao and Z.-z. Sun, “A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions,” Journal of Computational Physics, vol. 230, no. 15, pp. 6061-6074, 2011. · Zbl 1227.65075 · doi:10.1016/j.jcp.2011.04.013
[43] C.-M. Chen, F. Liu, I. Turner, and V. Anh, “Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation,” Numerical Algorithms, vol. 54, no. 1, pp. 1-21, 2010. · Zbl 1191.65116 · doi:10.1007/s11075-009-9320-1
[44] P. Zhuang and F. Liu, “Finite difference approximation for two-dimensional time fractional diffusion equation,” Journal of Algorithms & Computational Technology, vol. 1, no. 1, pp. 1-15, 2007.
[45] Q. Liu, Y. T. Gu, P. Zhuang, F. Liu, and Y. F. Nie, “An implicit RBF meshless approach for time fractional diffusion equations,” Computational Mechanics, vol. 48, no. 1, pp. 1-12, 2011. · Zbl 1377.76025 · doi:10.1007/s00466-011-0573-x
[46] H. Brunner, L. Ling, and M. Yamamoto, “Numerical simulations of 2D fractional subdiffusion problems,” Journal of Computational Physics, vol. 229, no. 18, pp. 6613-6622, 2010. · Zbl 1197.65143 · doi:10.1016/j.jcp.2010.05.015
[47] Q. Yang, T. Moroney, K. Burrage, I. Turner, and F. Liu, “Novel numerical methods for time-space fractional reaction diffusion equations in two dimensions,” ANZIAM Journal. Electronic Supplement, vol. 52, pp. C395-C409, 2010. · Zbl 1390.65093
[48] Q. Yang, I. Turner, F. Liu, and M. Ilić, “Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions,” SIAM Journal on Scientific Computing, vol. 33, no. 3, pp. 1159-1180, 2011. · Zbl 1229.35315 · doi:10.1137/100800634
[49] Q. X. Liu and F. W. Liu, “Modified alternating direction methods for solving a two-dimensional non-continuous seepage flow with fractional derivatives,” Mathematica Numerica Sinica, vol. 31, no. 2, pp. 179-194, 2009. · Zbl 1212.65342
[50] S. Chen and F. Liu, “ADI-Euler and extrapolation methods for the two-dimensional fractional advection-dispersion equation,” Journal of Applied Mathematics and Computing, vol. 26, no. 1-2, pp. 295-311, 2008. · Zbl 1146.76037 · doi:10.1007/s12190-007-0013-4
[51] M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation,” Journal of Computational Physics, vol. 211, no. 1, pp. 249-261, 2006. · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[52] H. Wang and K. Wang, “An O(Nlog2N) alternating-direction finite difference method for two-dimensional fractional diffusion equations,” Journal of Computational Physics, vol. 230, no. 21, pp. 7830-7839, 2011. · Zbl 1229.65165 · doi:10.1016/j.jcp.2011.07.003
[53] C. Tadjeran and M. M. Meerschaert, “A second-order accurate numerical method for the two-dimensional fractional diffusion equation,” Journal of Computational Physics, vol. 220, no. 2, pp. 813-823, 2007. · Zbl 1113.65124 · doi:10.1016/j.jcp.2006.05.030
[54] Y.-N. Zhang, Z.-Z. Sun, and X. Zhao, “Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation,” SIAM Journal on Numerical Analysis, vol. 50, no. 3, pp. 1535-1555, 2012. · Zbl 1251.65126 · doi:10.1137/110840959
[55] M. Cui, “Compact alternating direction implicit method for two-dimensional time fractional diffusion equation,” Journal of Computational Physics, vol. 231, no. 6, pp. 2621-2633, 2012. · Zbl 1242.65158 · doi:10.1016/j.jcp.2011.12.010
[56] S. Chen, F. Liu, P. Zhuang, and V. Anh, “Finite difference approximations for the fractional Fokker-Planck equation,” Applied Mathematical Modelling, vol. 33, no. 1, pp. 256-273, 2009. · Zbl 1167.65419 · doi:10.1016/j.apm.2007.11.005
[57] W. Deng, “Finite element method for the space and time fractional Fokker-Planck equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 1, pp. 204-226, 2008/09. · Zbl 1416.65344 · doi:10.1137/080714130
[58] Z.-Z. Sun and X. Wu, “A fully discrete difference scheme for a diffusion-wave system,” Applied Numerical Mathematics, vol. 56, no. 2, pp. 193-209, 2006. · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[59] Y.-N. Zhang and Z.-Z. Sun, “Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation,” Journal of Computational Physics, vol. 230, no. 24, pp. 8713-8728, 2011. · Zbl 1242.65174 · doi:10.1016/j.jcp.2011.08.020
[60] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, NY, USA, 2001. · Zbl 0971.65076 · doi:10.1201/9780203908518
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.