×

Error estimates for the interpolating moving least-squares method. (English) Zbl 1335.65018

Summary: In this paper, the interpolating moving least-squares (IMLS) method presented by Lancaster and Salkauskas is discussed in details. The advantage of the IMLS method is that the meshless method which is constructed based on the IMLS method can apply the essential boundary conditions directly and easily. A simpler expression of the approximation function of the IMLS method is obtained. Then the error estimate of the approximation function and its first and second order derivatives of the IMLS method are presented in one-dimensional case in this paper. The theoretical results show that if the order of the polynomial basis functions is big enough and the original function is sufficiently smooth, then the approximation function and its partial derivatives are convergent to the exact values in terms of the maximum radius of the domains of influence of nodes. For the purpose of demonstration, some selected numerical examples are given to prove the theories in this paper.

MSC:

65D05 Numerical interpolation
Full Text: DOI

References:

[1] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: an overview and recent developments, Comput. Meth. Appl. Mech. Eng., 139, 3-47 (1996) · Zbl 0891.73075
[2] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[3] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and allocation to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[4] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comput., 37, 141-158 (1981) · Zbl 0469.41005
[5] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[6] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Meth. Eng., 37, 229-256 (1994) · Zbl 0796.73077
[7] Wang, J. F.; Sun, F. X.; Cheng, R. J., Element-free Galerkin method for a kind of KdV equation, Chin. Phys. B, 19, 060201 (2010)
[8] Cheng, R. J.; Cheng, Y. M., A meshless method for the compound KdV-Burges equation, Chin. Phys. B, 20, 070206 (2011)
[9] Wendland, H., Meshless Galerkin method using radial basis functions, Math. Comput., 68, 1521-1531 (1999) · Zbl 1020.65084
[10] Dai, B. D.; Cheng, Y. M., Local boundary integral equation method based on radial basis functions for potential problems, Acta Phys. Sin., 56, 597-603 (2007) · Zbl 1150.31300
[11] Cheng, R. J.; Cheng, Y. M., The meshless method for solving the inverse heat conduction problem with a source parameter, Acta Phys. Sin., 56, 5569-5574 (2007) · Zbl 1150.80304
[12] Cheng, R. J.; Cheng, Y. M., The meshless method for a two-dimensional inverse heat conduction problem with a source parameter, Acta Mech. Sin., 39, 843-847 (2007)
[13] Wang, J. F.; Bai, F. N.; Cheng, Y. M., A meshless method for the nonlinear generalized regularized long wave equation, Chin. Phys. B, 20, 030206 (2011) · Zbl 1240.65371
[14] Atluri, S. N.; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127 (1998) · Zbl 0932.76067
[15] Dai, B. D.; Zheng, B. J., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl. Math. Comput., 219, 10044-10052 (2013) · Zbl 1307.80008
[16] Dai, B. D.; Cheng, J.; Zheng, B. J., A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis, Int. J. Appl. Mech., 5, 1, 1350011 (2013)
[17] Chen, L.; Liu, C.; Ma, H. P.; Cheng, Y. M., An interpolating local Petrov-Galerkin method for potential problems, Int. J. Appl. Mech., 6, 1450009 (2014)
[18] Zhu, P.; Zhang, L. W.; Liew, K. M., Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos. Struct., 107, 298-314 (2014)
[19] Cheng, R. J.; Liew, K. M., Analyzing two-dimensional sine-Gordon equation with the mesh-free reproducing kernel particle Ritz method, Comput. Meth. Appl. Mech. Eng., 245-246, 132-143 (2012) · Zbl 1354.65202
[20] Liew, K. M.; Lei, Z. X.; Yu, J. L.; Zhang, L. W., Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach, Comput. Meth. Appl. Mech. Eng., 268, 1-17 (2014) · Zbl 1295.74062
[21] Zhang, L. W.; Lei, Z. X.; Liew, K. M.; Yu, J. L., Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels, Compos. Struct., 111, 205-212 (2014)
[22] Zhang, L. W.; Lei, Z. X.; Liew, K. M.; Yu, J. L., Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels, Comput. Meth. Appl. Mech. Eng., 273, 1-18 (2014) · Zbl 1296.76116
[23] Cheng, R. J.; Zhang, L. W.; Liew, K. M., Modeling of biological population problems using the element-free kp-Ritz method, Appl. Math. Comput., 227, 274-290 (2014) · Zbl 1364.65193
[24] Cheng, R. J.; Liew, K. M., Modeling of biological population problems using the element-free Kp-Ritz method, Appl. Math. Comput., 227, 274-290 (2014) · Zbl 1364.65193
[25] Wei, Q.; Cheng, R. J., The improved moving least-square ritz method for the one-dimensional Sine-Gordon equation, Math. Prob. Eng., 12, 1-10 (2014) · Zbl 1407.65205
[26] Li, S.; Cheng, Y. M.; Wu, Y. F., Numerical manifold method based on the method of weighted residuals, Comput. Mech., 35, 470-480 (2005) · Zbl 1109.74373
[27] Li, S. C.; Li, S. C.; Cheng, Y. M., Enriched meshless manifold method for two-dimensional crack modeling, Theor. Appl. Fract. Mech., 44, 234-248 (2005)
[28] Cheng, Y. M.; Peng, M. J.; Li, J., The complex variable moving least-squares approximation and its application, Chin. J. Theor. Appl. Mech., 37, 719-723 (2005)
[29] Cheng, Y. M.; Li, J. H., A meshless method with complex variables for elasticity, Acta Phys. Sin., 4, 4463-4471 (2005) · Zbl 1202.74163
[30] Cheng, Y. M.; Li, J. H., A complex variable meshless method for fracture problems, Sci. China Ser. G, 49, 46-59 (2006) · Zbl 1147.74410
[31] Liew, K. M.; Feng, C.; Cheng, Y. M.; Kitipornchai, S., Complex variable moving least-squares method: a meshless approximation technique, Int. J. Numer. Meth. Eng., 70, 46-70 (2007) · Zbl 1194.74554
[32] Peng, M.; Liu, P.; Cheng, Y. M., The complex variable element-free Galerkin (CVEFG) method for two-dimensional elasticity problems, Int. J. Appl. Mech., 1, 367-385 (2009)
[33] Peng, M.; Li, D.; Cheng, Y. M., The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems, Eng. Struct., 33, 127-135 (2011)
[34] Bai, F. N.; Li, D. M.; Wang, J. F.; Cheng, Y. M., An improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional elasticity problems, Chin. Phys. B, 21, 020204 (2012)
[35] Li, D. M.; Bai, F. N.; Cheng, Y. M.; Liew, K. M., A novel complex variable element-free Galerkin method for two-dimensional large deformation problems, Comput. Meth. Appl. Mech. Eng., 233-236, 1-10 (2012) · Zbl 1253.74106
[36] Cheng, Y. M.; Wang, J. F.; Bai, F. N., A new complex variable element-free Galerkin method for two-dimensional potential problems, Chin. Phys. B, 21, 090203 (2012)
[37] Cheng, Y. M.; Li, R.; Peng, M., Complex variable element-free Galerkin (CVEFG) method for viscoelasticity problems, Chin. Phys. B, 21, 090205 (2012)
[38] Wang, J.; Cheng, Y. M., A new complex variable meshless method for transient heat conduction problems, Chin. Phys. B, 21, 120206 (2012)
[39] Cheng, Y. M.; Wang, J.; Li, R., The complex variable element-free Galerkin (CVEFG) method for two-dimensional elastodynamics problems, Int. J. Appl. Mech., 4, 1250042 (2012)
[40] Li, D. M.; Liew, K. M.; Cheng, Y. M., An improved complex variable element-free Galerkin method for two-dimensional large deformation elastoplasticity problems, Comput. Meth. Appl. Mech. Eng., 269, 72-86 (2014) · Zbl 1296.74015
[41] Wang, J.; Cheng, Y. M., New complex variable meshless method for advection-diffusion problems, Chin. Phys. B, 22, 030208 (2013)
[42] Chen, L.; Cheng, Y. M., The complex variable reproducing kernel particle method for elasto-plasticity problems, Sci. China Phys. Mech. Astron., 53, 954-965 (2010)
[43] Chen, Li; Liew, K. M.; Cheng, Y. M., The coupling of complex variable-reproducing kernel particle method and finite element method for two-dimensional potential problems, Interact. Multiscale Mech., 3, 277 (2010)
[44] Chen, L.; Cheng, Y. M., The complex variable reproducing kernel particle method for two-dimensional elastodynamics, Chin. Phys. B, 19, 090204 (2010)
[45] Chen, L.; Ma, H.; Cheng, Y. M., Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems, Chin. Phys. B, 22, 050202 (2013)
[46] Weng, Y.; Cheng, Y. M., Analyzing variable coefficient advection-diffusion problems via complex variable reproducing kernel particle method, Chin. Phys. B, 22, 090204 (2013)
[47] Cheng, Y. M.; Peng, M. J., Boundary element-free method for elastodynamics, Sci. China Ser. G, 48, 641-657 (2005)
[48] Liew, K. M.; Cheng, Y. M.; Kitipornchai, S., Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform, Int. J. Numer. Meth. Eng., 64, 1610-1627 (2005) · Zbl 1122.74533
[49] Kitipornchai, S.; Liew, K. M.; Cheng, Y. M., A boundary element-free method (BEFM) for three-dimensional elasticity problems, Comput. Mech., 36, 13-20 (2005) · Zbl 1109.74372
[50] Liew, K. M.; Cheng, Y. M.; Kitipornchai, S., Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, Int. J. Numer. Meth. Eng., 65, 1310-1332 (2006) · Zbl 1147.74047
[51] Liew, K. M.; Cheng, Y. M.; Kitipornchai, S., Analyzing the 2D fracture problems via the enriched boundary element-free method, Int. J. Solids Struct., 44, 4220-4233 (2007) · Zbl 1346.74162
[52] Peng, M.; Cheng, Y. M., A boundary element-free method (BEFM) for two-dimensional potential problems, Eng. Anal. Boundary Elem., 33, 77-82 (2009) · Zbl 1160.65348
[53] Cheng, Y. M.; Liew, K. M.; Kitipornchai, S., Reply to Comments on Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems, Int. J. Numer. Meth. Eng., 78, 1258-1260 (2009) · Zbl 1183.74336
[54] Liew, K. M.; Cheng, Y. M., Complex variable boundary element-free method for two-dimensional elastodynamic problems, Comput. Meth. Appl. Mech. Eng., 198, 3925-3933 (2009) · Zbl 1231.74502
[55] Atluri, S. N.; Sladek, J.; Sladek, V.; Zhu, T., The local boundary integral equation (LBIE) and its meshless implementation for linear elasticity, Comput. Mech., 25, 180-198 (2000) · Zbl 1020.74048
[56] Dai, B. D.; Cheng, Y. M., An improved local boundary integral equation method for two-dimensional potential problems, Int. J. Appl. Mech., 2, 421-436 (2010)
[57] Kothnur, V. S.; Mukherjee, S.; Mukherjee, Y. X., Two dimensional linear elasticity by the boundary node method, Int. J. Solids Struct., 36, 1129-1147 (1999) · Zbl 0937.74074
[58] Zhang, Z.; Liew, K. M.; Cheng, Y. M.; Li, Y. Y., Analyzing 2D fracture problems with the improved element-free Galerkin method, Eng. Anal. Boundary Elem., 32, 241-250 (2008) · Zbl 1244.74240
[59] Zhang, Z.; Liew, K. M.; Cheng, Y. M., Coupling of improved element-free Galerkin and boundary element methods for the 2D elasticity problems, Eng. Anal. Boundary Elem., 32, 100-107 (2008) · Zbl 1244.74204
[60] Zhang, Z.; Li, D.; Cheng, Y. M.; Liew, K. M., The improved element-free Galerkin method for three-dimensional wave equation, Acta Mech. Sin., 28, 808-818 (2012) · Zbl 1345.65059
[61] Zhang, Z.; Cheng, Y. M.; Liew, K. M., The improved element-free Galerkin method for two-dimensional elastodynamics problems, Eng. Anal. Boundary Elem., 37, 1576-1584 (2013) · Zbl 1287.74055
[62] Zhang, Z.; Wang, J.; Cheng, Y. M.; Liew, K. M., The improved element-free Galerkin method for three-dimensional transient heat conduction problems, Sci. China Phys. Mech. Astron., 56, 1568-1580 (2013)
[63] Peng, M. J.; Li, R. X.; Cheng, Y. M., Analyzing three-dimensional viscoelasticity problems via the improved element-free Galerkin (IEFG) method, Eng. Anal. Boundary Elem., 40, 104-113 (2014) · Zbl 1297.74153
[64] Zhang, L. W.; Deng, Y. J.; Liew, K. M., An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Boundary Elem., 40, 181-188 (2014) · Zbl 1297.65123
[65] Gao, H.; Cheng, Y., A complex variable meshless manifold method for fracture problems, Int. J. Comput. Meth., 7, 55-81 (2010) · Zbl 1267.74124
[66] Levin, D., The approximation power of moving least-squares, Math. Comput., 67, 1335-1754 (1998)
[67] Armentano, M. G.; Durán, R. G., Error estimates for moving least square approximations, Appl. Numer. Math., 37, 397-416 (2001) · Zbl 0984.65096
[68] Zuppa, C., Error estimates for moving least square approximations, Bull. Braz. Math. Soc., 34, 231-249 (2003) · Zbl 1056.41007
[69] Cheng, R.; Cheng, Y., Error estimates for the finite point method, Appl. Numer. Math., 58, 884-898 (2008) · Zbl 1145.65086
[70] Li, X.; Zhu, J., A Galerkin boundary node method and its convergence analysis, J. Comput. Appl. Math., 230, 314-328 (2009) · Zbl 1189.65291
[71] Kaljevic, I.; Saigal, S., An improved element free Galerkin formulation, Int. J. Numer. Meth. Eng., 40, 2953-2974 (1997) · Zbl 0895.73079
[72] Maisuradze, G.; Thompson, D.; Wagner, A.; Minkoff, M., Interpolating moving least-squares methods for fitting potential energy surfaces: detailed analysis of one-dimensional applications, J. Chem. Phys., 119, 10002-10014 (2003)
[73] Netuzhylov, H., Enforcement of boundary conditions in meshfree methods using interpolating moving least squares, Eng. Anal. Boundary Elem., 32, 512-516 (2008) · Zbl 1244.65190
[74] Ren, H.; Cheng, Y. M.; Zhang, W., An improved boundary element-free method (IBEFM) for two-dimensional potential problems, Chin. Phys. B, 18, 4065-4073 (2009)
[75] Ren, H.; Cheng, Y. M.; Zhang, W., An interpolating boundary element-free method (IBEFM) for elasticity problems, Sci. China Phys.: Mech. Astron., 53, 758-766 (2010)
[76] Ren, H.; Cheng, Y. M., The interpolating element-free Galerkin (IEFG) method for two-dimensional elasticity problems, Int. J. Appl. Mech., 3, 735-758 (2011)
[77] Ren, H.; Cheng, Y. M., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Boundary Elem., 36, 873-880 (2012) · Zbl 1352.65539
[78] Ren, H.; Cheng, J.; Huang, A., The complex variable interpolating moving least-squares method, Appl. Math. Comput., 219, 1724-1736 (2012) · Zbl 1291.65138
[79] Ren, H.; Cheng, Y. M., A new element-free Galerkin method based on improved complex variable moving least-squares approximation for elasticity, Int. J. Comput. Mater. Sci. Eng., 1, 1250011 (2012)
[80] Wang, J. F.; Sun, F. X.; Cheng, Y. M., An improved interpolating element-free Galerkin method with nonsingular weight function for two-dimensional potential problems, Chin. Phys. B, 21, 090204 (2012)
[81] Wang, J. F.; Wang, J. F.; Sun, F. X.; Cheng, Y. M., An interpolating boundary element-free method with nonsingular weight function for two-dimensional potential problems, Int. J. Comput. Meth., 10, 1350043 (2013) · Zbl 1359.65282
[82] Sun, F. X.; Wang, J. F.; Cheng, Y. M., An improved interpolating element-free Galerkin method for elasticity, Chin. Phys. B, 22, 120203 (2013)
[83] Sun, F. X.; Liu, C.; Cheng, Y. M., An improved interpolating element-free Galerkin method based on nonsingular weight functions, Math. Prob. Eng., 2014, 323945 (2014) · Zbl 1407.74091
[84] Bitaraf, M.; Mohammadi, S., Large deflection analysis of flexible plates by the meshless finite point method, Thin-Walled Struct., 48, 200-214 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.