×

The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. (English) Zbl 1376.92016

Summary: Mathematical and numerical modelling of the cardiovascular system is a research topic that has attracted remarkable interest from the mathematical community because of its intrinsic mathematical difficulty and the increasing impact of cardiovascular diseases worldwide. In this review article we will address the two principal components of the cardiovascular system: arterial circulation and heart function. We will systematically describe all aspects of the problem, ranging from data imaging acquisition, stating the basic physical principles, analysing the associated mathematical models that comprise PDE and ODE systems, proposing sound and efficient numerical methods for their approximation, and simulating both benchmark problems and clinically inspired problems. Mathematical modelling itself imposes tremendous challenges, due to the amazing complexity of the cardiocirculatory system, the multiscale nature of the physiological processes involved, and the need to devise computational methods that are stable, reliable and efficient. Critical issues involve filtering the data, identifying the parameters of mathematical models, devising optimal treatments and accounting for uncertainties. For this reason, we will devote the last part of the paper to control and inverse problems, including parameter estimation, uncertainty quantification and the development of reduced-order models that are of paramount importance when solving problems with high complexity, which would otherwise be out of reach.

MSC:

92C30 Physiology (general)
92-08 Computational methods for problems pertaining to biology
Full Text: DOI

References:

[1] Abboud, S.; Berenfeld, O.; Sadeh, D., Simulation of high-resolution QRS complex using a ventricular model with a fractal conduction system: effects of ischemia on high-frequency QRS potentials, Circ. Res., 68, 1751-1760, (1991) · doi:10.1161/01.RES.68.6.1751
[2] Ahmed, S.; Giddens, D., Pulsatile poststenotic flow studies with laser Doppler anemometry, J. Biomech., 17, 695-705, (1984) · doi:10.1016/0021-9290(84)90123-4
[3] Akkerman, I.; Bazilevs, Y.; Calo, V.; Hughes, T.; Hulshoff, S., The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech., 41, 371-378, (2008) · Zbl 1162.76355 · doi:10.1007/s00466-007-0193-7
[4] Alauzet, F.; Fabrèges, B.; Fernández, M.; Landajuela, M., Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures, Comput. Methods Appl. Mech. Engrg, 301, 300-335, (2016) · Zbl 1423.76201 · doi:10.1016/j.cma.2015.12.015
[5] Aliev, R.; Panfilov, A., A simple two-variable model of cardiac excitation, Chaos Solitons Fract., 7, 293-301, (1996) · doi:10.1016/0960-0779(95)00089-5
[6] Álvarez, A.; Alonso-Atienza, F.; Rojo-Álvarez, J.; Garcia-Alberola, A.; Moscoso, M., Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: A model study, Math. Comput. Model., 55, 1770-1781, (2012) · Zbl 1255.92013 · doi:10.1016/j.mcm.2011.11.025
[7] Ambrosi, D.; Pezzuto, S., Active stress vs. active strain in mechanobiology: constitutive issues, J. Elasticity, 2, 199-212, (2012) · Zbl 1312.74015 · doi:10.1007/s10659-011-9351-4
[8] Ambrosi, D.; Arioli, G.; Nobile, F.; Quarteroni, A., Electromechanical coupling in cardiac dynamics: the active strain approach, SIAM J. Appl. Math., 2, 605-621, (2011) · Zbl 1419.74174 · doi:10.1137/100788379
[9] Andreianov, B.; Bendahmane, M.; Quarteroni, A.; Ruiz-Baier, R., Solvability analysis and numerical approximation of linearized cardiac electromechanics, Math. Models Methods Appl. Sci., 25, 959-993, (2015) · Zbl 1309.74049 · doi:10.1142/S0218202515500244
[10] Antiga, L.; Peiró, J.; Steinman, D.; Formaggia, L.; Quarteroni, A.; Veneziani, A., From image data to computational domains, 123-175, (2009), Springer
[11] Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D., An image-based modeling framework for patient-specific computational hemodynamics, Med. Biol. Engrg Comput., 46, 1097-1112, (2008) · doi:10.1007/s11517-008-0420-1
[12] Antoulas, A., Approximation of Large-Scale Dynamical Systems, pp., (2005), SIAM · Zbl 1158.93001 · doi:10.1137/1.9780898718713
[13] Asch, M.; Bocquet, M.; Nodet, M., Data Assimilation: Methods, Algorithms, and Applications, pp., (2017), SIAM · Zbl 1361.93001
[14] Astorino, M.; Grandmont, C., Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems, Numer. Math., 45-46, 3603-3612, (2009) · Zbl 1229.74095
[15] Astorino, M.; Chouly, F.; Fernández, M., Robin based semi-implicit coupling in fluid-structure interaction: stability analysis and numerics, SIAM J. Sci. Comput., 31, 4041-4065, (2009) · Zbl 1323.74099 · doi:10.1137/090749694
[16] Astorino, M.; Gerbeau, J.-F.; Pantz, O.; Traoré, K., Fluid-structure interaction and multi-body contact: application to the aortic valves, Comput. Methods Appl. Mech. Engrg, 116, 721-767, (2010)
[17] Astorino, M.; Hamers, J.; Shadden, C.; Gerbeau, J.-F., A robust and efficient valve model based on resistive immersed surfaces, Int. J. Numer. Methods Biomed. Engrg, 28, 937-959, (2012) · doi:10.1002/cnm.2474
[18] Augustin, C.; Holzapfel, G.; Steinbach, O., Classical and all-floating FETI methods for the simulation of arterial tissues, Int. J. Numer. Methods Engrg, 99, 290-312, (2014) · Zbl 1352.74187 · doi:10.1002/nme.4674
[19] Auricchio, F.; Ferrara, A.; Morganti, S., Comparison and critical analysis of invariant-based models with respect to their ability in Fitting human aortic valve data, Ann. Solid Struct. Mech., 4, 1-14, (2012) · doi:10.1007/s12356-012-0028-x
[20] Auricchio, F.; Lefieux, F.; Reali, A.; Veneziani, A., A locally anisotropic fluid-structure interaction remeshing strategy for thin structures with application to a hinged rigid leaflet, Int. J. Numer. Methods Engrg, 107, 155-180, (2016) · Zbl 1352.76018 · doi:10.1002/nme.5159
[21] Avolio, A., Multi-branched model of the human arterial system, Med. Biol. Engrg Comput., 18, 709-718, (1980) · doi:10.1007/BF02441895
[22] Babuška, I.; Nobile, F.; Tempone, R., A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45, 1005-1034, (2007) · Zbl 1151.65008 · doi:10.1137/050645142
[23] Babuška, I.; Tempone, R.; Zouraris, G., Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 800-825, (2004) · Zbl 1080.65003 · doi:10.1137/S0036142902418680
[24] Badia, S.; Nobile, F.; Vergara, C., Fluid-structure partitioned procedures based on Robin transmission conditions, J. Comput. Phys., 227, 7027-7051, (2008) · Zbl 1140.74010 · doi:10.1016/j.jcp.2008.04.006
[25] Badia, S.; Nobile, F.; Vergara, C., Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg, 198, 2768-2784, (2009) · Zbl 1228.76079 · doi:10.1016/j.cma.2009.04.004
[26] Badia, S.; Quaini, A.; Quarteroni, A., Modular vs. non-modular preconditioners for fluid-structure systems with large added-mass effect, Comput. Methods Appl. Mech. Engrg, 197, 4216-4232, (2008) · Zbl 1194.74058 · doi:10.1016/j.cma.2008.04.018
[27] Badia, S.; Quaini, A.; Quarteroni, A., Splitting methods based on algebraic factorization for fluid-structure interaction, SIAM J. Sci. Comput., 30, 1778-1805, (2008) · Zbl 1368.74021 · doi:10.1137/070680497
[28] Bagci, E.; Vodovotz, Y.; Billiar, T.; Ermentrout, B.; Bahar, I., Computational insights on the competing effects of nitric oxide in regulating apoptosis, PLOS One, 3, pp., (2008) · doi:10.1371/journal.pone.0002249
[29] Ball, J., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 63, 337-403, (1976) · Zbl 0368.73040 · doi:10.1007/BF00279992
[30] Ball, J.; Knops, R., Nonlinear Analysis and Mechanics, I, Constitutive inequalities and existence theorems in nonlinear elastostatics, 187-241, (1977), Pitman · Zbl 0377.73043
[31] Ballarin, F.; Faggiano, E.; Ippolito, S.; Manzoni, A.; Quarteroni, A.; Rozza, G.; Scrofani, R., Fast simulations of patient-specific haemodynamics of coronary artery bypass grafts based on a POD-Galerkin method and a vascular shape parametrization, J. Comput. Phys., 315, 609-628, (2016) · Zbl 1349.76173 · doi:10.1016/j.jcp.2016.03.065
[32] Ballarin, F.; Faggiano, E.; Manzoni, A.; Quarteroni, A.; Rozza, G.; Ippolito, S.; Antona, C.; Scrofani, R., Numerical modeling of hemodynamics scenarios of patient-specific coronary artery bypass grafts, Biomech. Model. Mechanobiol., pp., (2017) · Zbl 1349.76173
[33] Balzani, D.; Brands, D.; Klawonn, A.; Rheinbach, O.; Schroder, J., On the mechanical modeling of anisotropic biological soft tissue and iterative parallel solution strategies, Arch. Appl. Mech., 80, 479-488, (2010) · Zbl 1271.74314 · doi:10.1007/s00419-009-0379-x
[34] Balzani, D.; Neff, P.; Schroder, J.; Holzapfel, G., A polyconvex framework for soft biological tissues: adjustment to experimental data, Int. J. Solids Struct., 43, 6052-6070, (2006) · Zbl 1120.74632 · doi:10.1016/j.ijsolstr.2005.07.048
[35] Banks, H.; Kunisch, K., Estimation Techniques for Distributed Parameter Systems, pp., (1989), Birkhäuser · Zbl 0695.93020 · doi:10.1007/978-1-4612-3700-6
[36] Banks, J.; Henshaw, W.; Schwendeman, D., An analysis of a new stable partitioned algorithm for FSI problems, I: incompressible flow and elastic solids, J. Comput. Phys., 269, 108-137, (2014) · Zbl 1349.74373 · doi:10.1016/j.jcp.2014.03.006
[37] Barbarotta, L., pp.
[38] Barker, A.; Cai, X., Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling, J. Comput. Phys., 229, 642-659, (2010) · Zbl 1253.76137 · doi:10.1016/j.jcp.2009.10.001
[39] Barker, A.; Cai, X., Two-level Newton and hybrid Schwarz preconditioners for fluid-structure interaction, SIAM J. Sci. Comput., 32, 2395-2417, (2010) · Zbl 1214.92014 · doi:10.1137/090779425
[40] Barnard, A.; Hunt, W.; Timlake, W.; Varley, E., A theory of fluid flow in compliant tubes, Biophys. J., 6, 717-724, (1966) · doi:10.1016/S0006-3495(66)86690-0
[41] Bayer, J.; Blake, R.; Plank, G.; Trayanova, N., A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models, Ann. Biomed. Engrg, 40, 2243-2254, (2012) · doi:10.1007/s10439-012-0593-5
[42] Bazilevs, Y.; Calo, V.; Zhang, Y.; Hughes, T., Isogeometric fluid-structure interaction analysis with applications to arterial blood flow, Comput. Mech., 38, 310-322, (2006) · Zbl 1161.74020 · doi:10.1007/s00466-006-0084-3
[43] Bazilevs, Y.; Gohean, J.; Hughes, T.; Moser, R.; Zhang, Y., Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the jarvik 2000 left ventricular assist device, Comput. Methods Appl. Mech. Engrg, 198, 3534-3550, (2009) · Zbl 1229.74096 · doi:10.1016/j.cma.2009.04.015
[44] Bazilevs, Y.; Takizawa, K.; Tezduyar, T., Computational Fluid-Structure Interaction: Methods and Applications, pp., (2012), Wiley · Zbl 1286.74001
[45] Beeler, G.; Reuter, H., Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol., 268, 177-210, (1977) · doi:10.1113/jphysiol.1977.sp011853
[46] Beirão da Veiga, H., On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6, 21-52, (2004) · Zbl 1068.35087 · doi:10.1007/s00021-003-0082-5
[47] Benner, P.; Gugercin, S.; Willcox, K., A survey of model reduction methods for parametric dynamical systems, SIAM Review, 57, 483-531, (2015) · Zbl 1339.37089 · doi:10.1137/130932715
[48] Bentley, J.; Friedman, J., Data structures for range searching, ACM Comput. Surv., 11, 397-409, (1979) · doi:10.1145/356789.356797
[49] Benzi, M.; Golub, G.; Liesen, J., Acta Numerica, 14, Numerical solution of saddle point problems, 1-137, (2005), Cambridge University Press · Zbl 1115.65034
[50] Bertagna, L.; Veneziani, A., A model reduction approach for the variational estimation of vascular compliance by solving an inverse fluid-structure interaction problem, Inverse Problems, 30, pp., (2014) · Zbl 1301.92015 · doi:10.1088/0266-5611/30/5/055006
[51] Bertagna, L.; D’Elia, M.; Perego, M.; Veneziani, A.; Bodnár, T.; Galdi, P.; Nečasová, Š., Fluid-Structure Interaction and Biomedical Applications, Data assimilation in cardiovascular fluid-structure interaction problems: An introduction, 395-481, (2014), Springer · Zbl 1426.76761
[52] Bertoglio, C.; Moireau, P.; Gerbeau, J.-F., Sequential parameter estimation for fluid-structure problems: application to hemodynamics, Int. J. Numer. Methods Biomed. Engrg, 28, 434-455, (2012) · doi:10.1002/cnm.1476
[53] Bertrand, F.; Tanguy, P.; Thibault, F., A three-dimensional fictitious domain method for incompressible fluid flow problems, Int. J. Numer. Methods Fluids, 25, 719-736, (1997) · Zbl 0896.76033 · doi:10.1002/(SICI)1097-0363(19970930)25:6<719::AID-FLD585>3.0.CO;2-K
[54] Bevan, R.; Nithiarasu, P.; van Loon, R.; Sazonov, I.; Luckraz, H.; Garnham, A., Application of a locally conservative Galerkin (LCG) method for modelling blood flow through a patient-specific carotid bifurcation, Int. J. Numer. Methods Fluids, 64, 1274-1295, (2010) · Zbl 1203.92034 · doi:10.1002/fld.2313
[55] Biehler, J.; Gee, M.; Wall, W., Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme, Biomech. Model. Mechanobiol., 14, 489-513, (2015) · doi:10.1007/s10237-014-0618-0
[56] Blanco, P.; Feijóo, R., A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications, Med. Engrg Phys., 35, 652-667, (2013) · doi:10.1016/j.medengphy.2012.07.011
[57] Blanco, P.; Deparis, S.; Malossi, A., On the continuity of Mean total normal stress in geometrical multiscale cardiovascular problems, J. Comput. Phys., 51, 136-155, (2013) · Zbl 1349.92046 · doi:10.1016/j.jcp.2013.05.037
[58] Blanco, P.; Feijóo, R.; Urquiza, S., A unified variational approach for coupling 3D-1D models and its blood flow applications, Comput. Methods Appl. Mech. Engrg, 196, 4391-4410, (2007) · Zbl 1173.76430 · doi:10.1016/j.cma.2007.05.008
[59] Blanco, P.; Pivello, M.; Urquiza, S.; Feijóo, R., On the potentialities of 3D-1D coupled models in hemodynamics simulations, J. Biomech., 42, 919-930, (2009) · doi:10.1016/j.jbiomech.2009.01.034
[60] Blanco, P.; Watanabe, S.; Feijóo, R., Identification of vascular territory resistances in one-dimensional hemodynamics simulations, J. Biomech., 45, 2066-2073, (2012) · doi:10.1016/j.jbiomech.2012.06.002
[61] Blanco, P.; Watanabe, S.; Passos, M.; Lemos, P.; Feijóo, R., An anatomically detailed arterial network model for one-dimensional computational hemodynamics, IEEE Trans. Biomed. Engrg, 62, 736-753, (2015) · doi:10.1109/TBME.2014.2364522
[62] Blum, J.; Le dimet, F.-X.; Navon, I.; Temam, R.; Tribbia, J., Handbook of Numerical Analysis, Data assimilation for geophysical fluids, 385-441, (2009), Elsevier
[63] Bodnár, T.; Galdi, G.; Nečasová, Š, Fluid-Structure Interaction and Biomedical Applications, pp., (2014), Springer · Zbl 1300.76003
[64] Boese, J.; Bock, M.; Schoenberg, S.; Schad, L., Estimation of aortic compliance using magnetic resonance pulse wave velocity measurement, Phys. Med. Biol., 45, 1703-1713, (2000) · doi:10.1088/0031-9155/45/6/320
[65] Boffi, D.; Gastaldi, L., A finite element approach for the immersed boundary method, Comput. Struct., 81, 491-501, (2003) · doi:10.1016/S0045-7949(02)00404-2
[66] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications, pp., (2013), Springer · Zbl 1277.65092 · doi:10.1007/978-3-642-36519-5
[67] Boffi, D.; Gastaldi, L.; Heltai, L., Numerical stability of the finite element immersed boundary method, Math. Models Methods Appl. Sci., 17, 1479-1505, (2007) · Zbl 1186.76661 · doi:10.1142/S0218202507002352
[68] Boffi, D.; Gastaldi, L.; Heltai, L.; Peskin, C., On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Engrg, 197, 2210-2231, (2008) · Zbl 1158.74523 · doi:10.1016/j.cma.2007.09.015
[69] Boileau, E.; Nithiarasu, P.; Blanco, P.; Muller, L.; Fossan, F.; Hellevik, L.; Donders, W.; Huberts, W.; Willemet, M.; Alastruey, J., A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, Int. J. Numer. Methods Biomed. Engrg, 31, pp., (2015) · doi:10.1002/cnm.2732
[70] Boldak, C.; Rolland, Y.; Toumoulin, C., An improved model-based vessel tracking algorithm with application to computed tomography angiography, Biocybern. Biomed., 23, 41-63, (2003)
[71] Bonomi, D.; Vergara, C.; Faggiano, E.; Stevanella, M.; Conti, C.; Redaelli, A.; Puppini, G.; Faggian, G.; Formaggia, L.; Luciani, G., Influence of the aortic valve leaflets on the fluid-dynamics in aorta in presence of a normally functioning bicuspid valve, Biomech. Model. Mechanobiol., 6, 1349-1361, (2015) · doi:10.1007/s10237-015-0679-8
[72] Borazjani, I.; Ge, L.; Sotiropoulos, F., Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies, J. Comput. Phys., 227, 7587-7620, (2008) · Zbl 1213.76129 · doi:10.1016/j.jcp.2008.04.028
[73] Bordas, R.; Gillow, K.; Gavaghan, D.; Rodríguez, B.; Kay, D., A bidomain model of the ventricular specialized conduction system of the heart, SIAM J. Appl. Math., 72, 1618-1643, (2012) · Zbl 1325.92023 · doi:10.1137/11082796X
[74] Borzì, A.; Schulz, V., Computational Optimization of Systems Governed by Partial Differential Equations, pp., (2011), SIAM · Zbl 1240.90001 · doi:10.1137/1.9781611972054
[75] Boulakia, M.; Fernández, M.; Gerbeau, J.-F.; Zemzemi, N., Direct and inverse problems in electrocardiography, AIP Conference Proceedings, 1048, 113-117, (2008) · Zbl 1163.92021 · doi:10.1063/1.2990868
[76] Boulakia, M.; Schenone, E.; Gerbeau, J.-F., Reduced-order modeling for cardiac electrophysiology. application to parameter identification, Int. J. Numer. Meth. Biomed. Engrg, 28, 727-744, (2012) · doi:10.1002/cnm.2465
[77] Bourgault, Y.; Coudière, Y.; Pierre, C., Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Analysis: Real World Applications, 10, 458-482, (2006) · Zbl 1154.35370 · doi:10.1016/j.nonrwa.2007.10.007
[78] Bourgault, Y.; Ethier, M.; Leblanc, V., Simulation of electrophysiological waves with an unstructured finite element method, ESAIM Math. Model. Numer. Anal., 37, 649-661, (2003) · Zbl 1065.92004 · doi:10.1051/m2an:2003051
[79] Brault, A.; Dumas, L.; Lucor, D., Uncertainty quantification of inflow boundary condition and proximal arterial stiffness-coupled effect on pulse wave propagation in a vascular network, Int. J. Numer. Methods Biomed. Engrg., pp., (2016)
[80] Bueno-Orovio, A.; Cherry, E.; Fenton, F., Minimal model for human ventricular action potentials in tissue, J. Theoret. Biol., 3, 544-560, (2008) · Zbl 1398.92052 · doi:10.1016/j.jtbi.2008.03.029
[81] Burman, E.; Fernández, M., Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg, 198, 766-784, (2009) · Zbl 1229.76045 · doi:10.1016/j.cma.2008.10.012
[82] Burman, E.; Fernández, M., An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes, Comput. Methods Appl. Mech. Engrg, 279, 497-514, (2014) · Zbl 1423.74867 · doi:10.1016/j.cma.2014.07.007
[83] Burman, E.; Claus, S.; Hansbo, P.; Larson, M.; Massing, A., Cutfem: discretizing geometry and partial differential equations, Int. J. Numer. Methods Engrg, 104, 472-501, (2015) · Zbl 1352.65604 · doi:10.1002/nme.4823
[84] Campbell, I.; Ries, J.; Dhawan, S.; Quyyumi, A.; Taylor, W.; Oshinski, J., Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation, J. Biomech. Engrg, 134, pp., (2012) · doi:10.1115/1.4006681
[85] Carew, T.; Vaishnav, R.; Patel, D., Compressibility of the arterial wall, Circ. Res., 23, 61-68, (1968) · doi:10.1161/01.RES.23.1.61
[86] Carr, J.; Fright, W.; Beatson, R., Surface interpolation with radial basis functions for medical imaging, IEEE Trans. Med. Imaging, 16, 96-107, (1997) · doi:10.1109/42.552059
[87] Causin, P.; Gerbeau, J.-F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg, 194, 4506-4527, (2005) · Zbl 1101.74027 · doi:10.1016/j.cma.2004.12.005
[88] Celik, I.; Ghia, U.; Roache, P.; Freitas, C.; Coleman, H.; Raad, P., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications, J. Fluids Engrg: Trans. ASME, 130, pp., (2008)
[89] Chabiniok, R.; Moireau, P.; Lesault, P.-F.; Rahmouni, A.; Deux, J.-F.; Chapelle, D., Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model, Biomech. Model. Mechanobiol., 11, 609-630, (2012) · doi:10.1007/s10237-011-0337-8
[90] Chabiniok, R.; Wang, V.; Hadjicharalambous, M.; Asner, L.; Lee, J.; Sermesant, M.; Kuhl, E.; Young, A.; Moireau, P.; Nash, M.; Chapelle, D.; Nordsletten, D., Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics, Interface Focus, 6, pp., (2016) · doi:10.1098/rsfs.2015.0083
[91] Chapelle, D.; Fragu, M.; Mallet, V.; Moireau, P., Fundamental principles of data assimilation underlying the verdandi library: applications to biophysical model personalization within euheart, Med. Biol. Engrg Comput., 51, 1221-1233, (2013) · doi:10.1007/s11517-012-0969-6
[92] Chapelle, D.; Gariah, A.; Moireau, P.; Sainte-Marie, J., A Galerkin strategy with proper orthogonal decomposition for parameter-dependent problems: analysis, assessments and applications to parameter estimation, ESAIM Math. Model. Numer. Anal., 47, 1821-1843, (2013) · Zbl 1295.65096 · doi:10.1051/m2an/2013090
[93] Charonko, J.; Kumar, R.; Stewart, K.; Little, W.; Vlachos, P., Vortices formed on the mitral valve tips aid normal left ventricular filling, Ann. Biomed. Engrg, 41, 1049-1061, (2013) · doi:10.1007/s10439-013-0755-0
[94] Chavent, G., Nonlinear Least Squares for Inverse Problems: Theoretical Foundations and Step-by-Step Guide for Applications, pp., (2010), Springer · Zbl 1191.65062 · doi:10.1007/978-90-481-2785-6
[95] Chen, J.; Lu, X.-Y.; Wang, W., Non-Newtonian effects of blood flow on hemodynamics in distal vascular graft anastomoses, J. Biomech., 39, 1983-1995, (2006) · doi:10.1016/j.jbiomech.2005.06.012
[96] Chen, P.; Schwab, C., Sparse-grid, reduced-basis Bayesian inversion, Comput. Methods Appl. Mech. Engrg, 297, 84-115, (2015) · Zbl 1425.65020 · doi:10.1016/j.cma.2015.08.006
[97] Chen, P.; Quarteroni, A.; Rozza, G., Simulation-based uncertainty quantification of human arterial network hemodynamics, Int. J. Numer. Methods Biomed. Engrg, 29, 698-721, (2013) · doi:10.1002/cnm.2554
[98] Cheng, L.; Bodley, J.; Pullan, A., Comparison of potential- and activation-based formulations for the inverse problem of electrocardiology, IEEE Trans. Biomed. Engrg, 50, 11-22, (2003) · doi:10.1109/TBME.2002.807326
[99] Cheng, Y.; Oertel, H.; Schenkel, T., Fluid-structure coupled CFD simulation of the left ventricular flow during filling phase, Ann. Biomed. Engrg, 5, 567-576, (2005) · doi:10.1007/s10439-005-4388-9
[100] Cherubini, C.; Filippi, S.; Nardinocchi, P.; Teresi, L., An electromechanical model of cardiac tissue: constitutive issues and electrophysiological effects, Prog. Biophys. Molec. Biol., 2-3, 562-573, (2008) · doi:10.1016/j.pbiomolbio.2008.02.001
[101] Cheung, S.; Wong, K. K. L.; Yeoh, G. H.; Yang, W.; Tu, J.; Beare, R.; Phan, T., Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation, Australas. Phys. Engrg Sci. Med., 33, 319-328, (2010) · doi:10.1007/s13246-010-0050-4
[102] Chinchapatnam, P.; Rhode, K.; Ginks, M.; Rinaldi, C.; Lambiase, P.; Razavi, R.; Arridge, S.; Sermesant, M., Model-based imaging of cardiac apparent conductivity and local conduction velocity for diagnosis and planning of therapy, IEEE Trans. Med. Imaging, 27, 1631-1642, (2008) · doi:10.1109/TMI.2008.2004644
[103] Ching, J.; Beck, J.; Porter, K., Bayesian state and parameter estimation of uncertain dynamical systems, Probab. Engrg Mech., 21, 81-96, (2006) · doi:10.1016/j.probengmech.2005.08.003
[104] Chnafa, C.; Mendez, S.; Nicoud, F., Image-based large-eddy simulation in a realistic left heart, Comput. Fluids, 94, 173-187, (2014) · Zbl 1391.76886 · doi:10.1016/j.compfluid.2014.01.030
[105] Choi, Y.; Constantino, J.; Vedula, V.; Trayanova, N.; Mittal, R., A new MRI-based model of heart function with coupled hemodynamics and application to normal and diseased canine left ventricles, Front. Bioeng. Biotechnol., 3, pp., (2015) · doi:10.3389/fbioe.2015.00140
[106] Chorin, A., Numerical solution of the Navier-Stokes equations, Math. Comp., 22, 745-762, (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[107] Chung, J.; Hulbert, G., A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(𝛼\) method, Trans. ASME J. Appl. Mech., 60, 371-375, (1993) · Zbl 0775.73337 · doi:10.1115/1.2900803
[108] Ciarlet, P., Mathematical Elasticity, pp., (1988), Elsevier Science · Zbl 0648.73014
[109] Ciarlet, P.; Necas, J., Unilateral problems in nonlinear, three-dimensional elasticity, Arch. Rat. Mech. Anal., 87, 319-338, (1985) · Zbl 0557.73009 · doi:10.1007/BF00250917
[110] Clayton, R.; Panfilov, A., A guide to modelling cardiac electrical activity in anatomically detailed ventricles, Prog. Biophys. Molec. Biol., 96, 19-43, (2008) · doi:10.1016/j.pbiomolbio.2007.07.004
[111] Clayton, R.; Bernus, O.; Cherry, E.; Dierckx, H.; Fenton, F.; Mirabella, L.; Panfilov, A.; Sachse, F.; Seemann, G.; Zhang, H., Models of cardiac tissue electrophysiology: progress, challenges and open questions, Prog. Biophys. Molec. Biol., 104, 22-48, (2011) · doi:10.1016/j.pbiomolbio.2010.05.008
[112] Cocosco, C.; Netsch, T.; Sénǵas, J.; Bystrov, D.; Niessen, W.; Viergever, M., Computer Assisted Radiology and Surgery: Proceedings of the 18th International Congress and Exhibition, Automatic cardiac region-of-interest computation in cine 3D structural MRI, 1126-1131, (2004), Elsevier
[113] Codina, R.; Badia, S., On some pressure segregation methods of fractional-step type for the finite element approximation of incompressible flow problems, Comput. Methods Appl. Mech. Engrg, 195, 2900-2918, (2006) · Zbl 1121.76032 · doi:10.1016/j.cma.2004.06.048
[114] Cohen, A.; Devore, R., Acta Numerica, 24, Approximation of high-dimensional parametric PDEs, 1-159, (2015), Cambridge University Press · Zbl 1320.65016
[115] Colciago, C.; Deparis, S.; Quarteroni, A., Comparisons between reduced order models and full 3D models for fluid-structure interaction problems in haemodynamics, J. Comput. Appl. Math., 2754, 120-138, (2014) · Zbl 1293.92008 · doi:10.1016/j.cam.2013.09.049
[116] Colli Franzone, P.; Guerri, L., Spreading excitation in 3-D models of the anisotropic cardiac tissue I: validation of the eikonal model, Math. Biosci., 113, 145-209, (1993) · Zbl 0786.92012 · doi:10.1016/0025-5564(93)90001-Q
[117] Colli Franzone, P.; Pavarino, L., A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. Models Methods Appl. Sci., 14, 883-911, (2004) · Zbl 1068.92024 · doi:10.1142/S0218202504003489
[118] Colli Franzone, P.; Savaré, G.; Lorenzi, A.; Ruf, B., Evolution Equations, Semigroups and Functional Analysis: In Memory of Brunello Terreni, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, 49-78, (2002), Birkhäuser · doi:10.1007/978-3-0348-8221-7_4
[119] Colli Franzone, P.; Guerri, L.; Rovida, S., Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations, J. Math. Biol., 28, 121-176, (1990) · Zbl 0733.92006 · doi:10.1007/BF00163143
[120] Colli Franzone, P.; Guerri, L.; Viganotti, C.; Taccardi, B., Finite element approximation of regularized solution of the inverse potential problem of electrocardiography and applications to experimental data, Calcolo, 12, 91-186, (1985) · Zbl 0623.65136 · doi:10.1007/BF02576202
[121] Colli Franzone, P.; Pavarino, L.; Scacchi, S., Mathematical Cardiac Electrophysiology, pp., (2014), Springer · Zbl 1318.92002 · doi:10.1007/978-3-319-04801-7
[122] Colli Franzone, P.; Pavarino, L.; Scacchi, S., Bioelectrical effects of mechanical feedbacks in a strongly coupled cardiac electro-mechanical model, Math. Models Methods Appl. Sci., 26, 27-57, (2016) · Zbl 1355.92021 · doi:10.1142/S0218202516500020
[123] Colli Franzone, P.; Pavarino, L.; Taccardi, B., Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models, Math. Biosci., 197, 35-66, (2005) · Zbl 1074.92004 · doi:10.1016/j.mbs.2005.04.003
[124] Colli Franzone, P.; Taccardi, B.; Viganotti, C., An approach to inverse calculation of epicardial potentials from body surface maps, Adv. Cardiol., 21, 50-54, (1978) · doi:10.1159/000400421
[125] Corrado, C.; Gerbeau, J.-F.; Moireau, P., Identification of weakly coupled multiphysics problems: application to the inverse problem of electrocardiography, J. Comput. Phys., 283, 271-298, (2015) · Zbl 1352.92086 · doi:10.1016/j.jcp.2014.11.041
[126] Costa, K.; Holmes, J.; Mcculloch, A., Modelling cardiac mechanical properties in three dimensions, Phil. Trans. Royal Soc. A, 359, 1233-1250, (2001) · Zbl 0994.92013 · doi:10.1098/rsta.2001.0828
[127] Crosetto, P.; Deparis, S.; Fourestey, G.; Quarteroni, A., Parallel algorithms for fluid-structure interaction problems in haemodynamics, SIAM J. Sci. Comput., 33, 1598-1622, (2011) · Zbl 1417.92008 · doi:10.1137/090772836
[128] Cui, T.; Marzouk, Y.; Willcox, K., Data-driven model reduction for the Bayesian solution of inverse problems, Int. J. Numer. Methods Engrg, 102, 966-990, (2015) · Zbl 1352.65445 · doi:10.1002/nme.4748
[129] Dacorogna, B., Direct Methods in the Calculus of Variations, pp., (2000), Springer · Zbl 1140.49001
[130] D’Angelo, C., pp.
[131] Degroote, J., On the similarity between Dirichlet-Neumann with interface artificial compressibility and Robin-Neumann schemes for the solution of fluid-structure interaction problems, J. Comput. Phys., 230, 6399-6403, (2011) · Zbl 1280.74012 · doi:10.1016/j.jcp.2011.05.012
[132] Degroote, J.; Vierendeels, J., Multi-solver algorithms for the partitioned simulation of fluid-structure interaction, Comput. Methods Appl. Mech. Engrg, 25-28, 2195-2210, (2011) · Zbl 1230.74243 · doi:10.1016/j.cma.2011.03.015
[133] Degroote, J.; Swillens, A.; Bruggeman, P.; Segers, P.; Vierendeels, J., Simulation of fluid-structure interaction with the interface artificial compressibility method, Int. J. Numer. Methods Biomed. Engrg, 26, 276-289, (2010) · Zbl 1406.74193 · doi:10.1002/cnm.1276
[134] D’Elia, M.; Veneziani, A., Uncertainty quantification for data assimilation in a steady incompressible Navier-Stokes problem, ESAIM Math. Model. Numer. Anal., 47, 1037-1057, (2013) · Zbl 1271.76062 · doi:10.1051/m2an/2012056
[135] D’Elia, M.; Perego, M.; Veneziani, A., A variational data assimilation procedure for the incompressible Navier-Stokes equations in hemodynamics, J. Sci. Comput., 52, 340-359, (2012) · Zbl 1264.76076 · doi:10.1007/s10915-011-9547-6
[136] Delingette, H.; Billet, F.; Wong, K.; Sermesant, M.; Rhode, K.; Ginks, M.; Rinaldi, C.; Razavi, R.; Ayache, N., Personalization of cardiac motion and contractility from images using variational data assimilation, IEEE Trans. Biomed. Engrg, 59, 20-24, (2012) · doi:10.1109/TBME.2011.2160347
[137] Deparis, S., pp.
[138] Deparis, S.; Discacciati, M.; Fourestey, G.; Quarteroni, A., Fluid-structure algorithms based on Steklov-Poincaré operators, Comput. Methods Appl. Mech. Engrg, 195, 5797-5812, (2006) · Zbl 1124.76026 · doi:10.1016/j.cma.2005.09.029
[139] Deparis, S.; Forti, D.; Grandperrin, G.; Quarteroni, A., Facsi: A block parallel preconditioner for fluid-structure interaction in hemodynamics, J. Comput. Phys., 700-718, (2016) · Zbl 1373.74036 · doi:10.1016/j.jcp.2016.10.005
[140] Deparis, S.; Grandperrin, G.; Quarteroni, A., Parallel preconditioners for the unsteady Navier-Stokes equations and applications to hemodynamics simulations, Comput. Fluids, 92, 253-273, (2014) · Zbl 1391.76887 · doi:10.1016/j.compfluid.2013.10.034
[141] Dick, J.; Kuo, F.; Sloan, I., Acta Numerica, 22, High-dimensional integration: The quasi-Monte Carlo way, 133-288, (2013), Cambridge University Press · Zbl 1296.65004
[142] Difrancesco, D.; Noble, D., A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Phil. Trans. Royal Soc. B, 307, 353-398, (1985) · doi:10.1098/rstb.1985.0001
[143] Dihlmann, M.; Haasdonk, B., A reduced basis Kalman filter for parametrized partial differential equations, ESAIM Control Optim. Calc. Var., 22, 625-669, (2016) · Zbl 1346.35245 · doi:10.1051/cocv/2015019
[144] Do, H.; Owida, A. A.; Yang, W.; Morsi, Y., Numerical simulation of the haemodynamics in end-to-side anastomoses, Int. J. Numer. Methods Fluids, 67, 638-650, (2011) · Zbl 1229.92047 · doi:10.1002/fld.2381
[145] Dohrmann, C.; Widlund, O., An overlapping Schwarz algorithm for almost incompressible elasticity, SIAM J. Numer. Anal., 4, 8811-8823, (2009) · Zbl 1410.74064
[146] Dokos, S.; Smaill, B.; Young, A.; Legrice, I., Shear properties of passive ventricular myocardium, Amer. J. Physiol., 283, H2650-H2659, (2002)
[147] Donders, W.; Huberts, W.; van de Vosse, F.; Delhaas, T., Personalization of models with many model parameters: an efficient sensitivity analysis approach, Int. J. Numer. Methods Biomed. Engrg, 31, pp., (2015) · doi:10.1002/cnm.2727
[148] Donea, J., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interaction, Comput. Methods Appl. Mech. Engrg, 33, 689-723, (1982) · Zbl 0508.73063 · doi:10.1016/0045-7825(82)90128-1
[149] Dur, O.; Coskun, S.; Coskun, K.; Frakes, D.; Kara, L.; Pekkan, K., Computer-aided patient-specific coronary artery graft design improvements using CFD coupled shape optimizer, Cardiovasc. Engr. Tech., 1-13, (2011)
[150] Durrer, D.; van Dam, R.; Freud, G.; Janse, M.; Meijler, F.; Arzbaecher, R., Total excitation of the isolated human heart, Circulation, 41, 899-912, (1970) · doi:10.1161/01.CIR.41.6.899
[151] Eck, V.; Donders, W.; Sturdy, J.; Feinberg, J.; Delhaas, T.; Hellevik, L.; Huberts, W., A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications, Int. J. Numer. Methods Biomed. Engrg, 32, pp., (2016) · doi:10.1002/cnm.2755
[152] Einstein, D.; Kunzelman, K.; Reinhall, P.; Nicosia, M.; Cochran, R., The effects of cellular contraction on aortic valve leaflet flexural stiffness, J. Heart Valve Disease, 14, 376-385, (2005)
[153] Eitel, C.; Hindricks, G.; Dagres, N.; Sommer, P.; Piorkowski, C., Ensite velocity™ cardiac mapping system: A new platform for 3D mapping of cardiac arrhythmias, Expert Rev. Med. Devices, 7, 185-192, (2010) · doi:10.1586/erd.10.1
[154] Elman, H.; Silvester, D., Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations, SIAM J. Sci. Comput., 17, 33-46, (1996) · Zbl 0843.65080 · doi:10.1137/0917004
[155] Elman, H.; Silvester, D.; Wathen, A., Finite Elements and Fast Iterative Solvers, pp., (2005), Oxford Science Publications · Zbl 1083.76001
[156] Enden, G.; Popel, A., A numerical study of the shape of the surface separating flow into branches in microvascular bifurcations, J. Biomech. Engrg, 114, 398-405, (1992) · doi:10.1115/1.2891401
[157] Eriksson, T.; Prassl, A.; Plank, G.; Holzapfel, G., Modeling the dispersion in electromechanically coupled myocardium, Int. J. Numer. Methods Biomed. Engrg, 29, 1267-1284, (2013) · doi:10.1002/cnm.2575
[158] Ernst, O.; Sprungk, B.; Starkloff, H.-J., Extraction of Quantifiable Information from Complex Systems, Bayesian inverse problems and Kalman filters, 133-159, (2014), Springer · Zbl 1328.93260
[159] Ervin, V.; Lee, H., Numerical approximation of a quasi-Newtonian Stokes flow problem with defective boundary conditions, SIAM J. Numer. Anal., 45, 2120-2140, (2007) · Zbl 1146.76002 · doi:10.1137/060669012
[160] Ethier, C.; Steinman, D.; Zhang, X.; Karpik, S.; Ojha, M., Flow waveform effects on end-to-side anastomotic flow patterns, J. Biomech., 31, 609-617, (1998) · doi:10.1016/S0021-9290(98)00059-1
[161] Ethier, M.; Bourgault, Y., Semi-implicit time-discretization schemes for the bidomain model, SIAM J. Numer. Anal., 5, 2443-2468, (2008) · Zbl 1182.92009 · doi:10.1137/070680503
[162] Euler, L., Opera posthuma mathematica et physica anno 1844 detecta, editerunt P. H. Fuss et N. Fuss, Petropoli, apud Eggers et socios, 1, Principia pro motu sanguinis per arterias determinando, 814-823, (1775)
[163] Evensen, G., Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 9, 10143-10162, (1994) · doi:10.1029/94JC00572
[164] Evensen, G., The ensemble Kalman filter: theoretical formulation and practical implementation, Ocean Dynamics, 53, 343-367, (2003) · doi:10.1007/s10236-003-0036-9
[165] Evensen, G., The ensemble Kalman filter for combined state and parameter estimation, IEEE Control Syst. Mag., 29, 83-104, (2009) · Zbl 1395.93534 · doi:10.1109/MCS.2009.932223
[166] Faggiano, E.; Antiga, A.; Puppini, G.; Quarteroni, A.; Luciani, G.; Vergara, C., Helical flows and asymmetry of blood jet in dilated ascending aorta with normally functioning bicuspid valve, Biomech. Model. Mechanobiol., 4, 801-813, (2013) · doi:10.1007/s10237-012-0444-1
[167] Faggiano, E.; Lorenzi, T.; Quarteroni, A., Metal artefact reduction in computed tomography images by a fourth-order total variation flow, Comput. Methods Biomech. Biomed. Engrg: Imaging & Visualization, 3-4, 202-213, (2014)
[168] Farhat, C.; Roux, F., A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Engrg, 32, 1205-1227, (1991) · Zbl 0758.65075 · doi:10.1002/nme.1620320604
[169] Fasano, A.; Santos, R.; Sequeira, A.; Ambrosi, D.; Quarteroni, A.; Rozza, G., Blood coagulation: A puzzle for biologists, a maze for mathematicians, 41-75, (2012), Springer
[170] Fedele, M.; Faggiano, E.; Barbarotta, L.; Cremonesi, F.; Formaggia, L.; Perotto, S., 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Semi-automatic three-dimensional vessel segmentation using a connected component localization of the region-scalable fitting energy, 72-77, (2015), IEEE · doi:10.1109/ISPA.2015.7306035
[171] Fedele, M.; Faggiano, E.; Dede’, L.; Quarteroni, A., pp.
[172] Fenton, F.; Karma, A., Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation, Chaos, 8, 20-47, (1998) · Zbl 1069.92503 · doi:10.1063/1.166311
[173] Fernández, M., Incremental displacement-correction schemes for incompressible fluid-structure interaction: stability and convergence analysis, Numer. Math., 123, 21-65, (2013) · Zbl 1331.76068 · doi:10.1007/s00211-012-0481-9
[174] Fernández, M.; Moubachir, M., A Newton method using exact Jacobians for solving fluid-structure coupling, Comput. Struct., 83, 127-142, (2005) · doi:10.1016/j.compstruc.2004.04.021
[175] Fernández, M.; Zemzemi, N., Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation, Math. Biosci., 226, 58-75, (2010) · Zbl 1193.92024 · doi:10.1016/j.mbs.2010.04.003
[176] Fernández, M.; Gerbeau, J.-F.; Grandmont, C., A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Int. J. Numer. Methods Engrg, 69, 794-821, (2007) · Zbl 1194.74393 · doi:10.1002/nme.1792
[177] Fernández, M.; Milisic, V.; Quarteroni, A., Analysis of a geometrical multiscale blood flow model based on the coupling of ODEs and hyperbolic pdes, Multiscale Model. Simul., 4, 215-236, (2005) · Zbl 1085.35095 · doi:10.1137/030602010
[178] Figueroa, C.; Vignon-Clementel, I.; Jansen, K.; Hughes, T.; Taylor, C., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg, 195, 5685-5706, (2006) · Zbl 1126.76029 · doi:10.1016/j.cma.2005.11.011
[179] Fin, L.; Grebe, R., Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius, Comput. Methods Biomech. Biomed. Engrg, 3, 163-170, (2003) · doi:10.1080/1025584031000097933
[180] Fischer, P.; Loth, F.; Lee, S.; Lee, S.; Smith, D.; Bassiouny, H., Simulation of high-Reynolds number vascular flows, Comput. Methods Appl. Mech. Engrg, 196, 3049-3060, (2007) · Zbl 1120.76076 · doi:10.1016/j.cma.2006.10.015
[181] Fishman, G., Monte Carlo: Concepts, Algorithms, and Applications, pp., (1996), Springer · Zbl 0859.65001 · doi:10.1007/978-1-4757-2553-7
[182] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1, 445-466, (1961) · doi:10.1016/S0006-3495(61)86902-6
[183] Formaggia, L.; Vergara, C., Prescription of general defective boundary conditions in fluid-dynamics, Milan J. Math., 80, 333-350, (2012) · Zbl 1342.76040 · doi:10.1007/s00032-012-0185-8
[184] Formaggia, L.; Gerbeau, J.-F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl. Mech. Engrg, 191, 561-582, (2001) · Zbl 1007.74035 · doi:10.1016/S0045-7825(01)00302-4
[185] Formaggia, L.; Gerbeau, J.-F.; Nobile, F.; Quarteroni, A., Numerical treatment of defective boundary conditions for the Navier-Stokes equation, SIAM J. Numer. Anal., 40, 376-401, (2002) · Zbl 1020.35070 · doi:10.1137/S003614290038296X
[186] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J. Engrg Math., 47, 251-276, (2003) · Zbl 1070.76059 · doi:10.1023/B:ENGI.0000007980.01347.29
[187] Formaggia, L.; Moura, A.; Nobile, F., On the stability of the coupling of 3D and 1D fluid-structure interaction models for blood flow simulations, M2AN Math. Model. Numer. Anal., 41, 743-769, (2007) · Zbl 1139.92009 · doi:10.1051/m2an:2007039
[188] Formaggia, L.; Nobile, F.; Quarteroni, A.; Veneziani, A., Multiscale modelling of the circulatory system: A preliminary analysis, Comput. Vis. Sci., 2, 75-83, (1999) · Zbl 1067.76624 · doi:10.1007/s007910050030
[189] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System, pp., (2009), Springer · Zbl 1300.92005 · doi:10.1007/978-88-470-1152-6
[190] Formaggia, L.; Quarteroni, A.; Vergara, C., On the physical consistency between three-dimensional and one-dimensional models in haemodynamics, J. Comput. Phys., 244, 97-112, (2013) · Zbl 1377.76042 · doi:10.1016/j.jcp.2012.08.001
[191] Formaggia, L.; Veneziani, A.; Vergara, C., A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics, SIAM J. Numer. Anal., 46, 2769-2794, (2008) · Zbl 1235.76025 · doi:10.1137/060672005
[192] Formaggia, L.; Veneziani, A.; Vergara, C., Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods, Comput. Methods Appl. Mech. Engrg, 199, 677-688, (2009) · Zbl 1227.74019 · doi:10.1016/j.cma.2009.10.017
[193] Fornefett, M.; Rohr, K.; Stiehl, H., Radial basis functions with compact support for elastic registration of medical images, Image Vision Comput., 19, 87-96, (2001) · doi:10.1016/S0262-8856(00)00057-3
[194] Forster, C.; Wall, W.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flow, Comput. Methods Appl. Mech. Engrg, 196, 1278-1293, (2007) · Zbl 1173.74418 · doi:10.1016/j.cma.2006.09.002
[195] Forti, D.; Dede’, L., Semi-implicit BDF time discretization of the Navier-Stokes equations with VMS-LES modeling in a high performance computing framework, Comput. Fluids, 117, 168-182, (2015) · Zbl 1390.76149 · doi:10.1016/j.compfluid.2015.05.011
[196] Frangi, A.; Niessen, W.; Hoogeveen, R.; van Walsum, T.; Viergever, M., Model-based quantitation of 3-D magnetic resonance angiographic images, IEEE Trans. Med. Imaging, 18, 946-956, (1999) · doi:10.1109/42.811279
[197] Frazier, D.; Krassowska, W.; Chen, P.; Wolf, P.; Danieley, N.; Smith, W.; Ideker, R., Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium, Circ. Res., 63, 135-146, (1988) · doi:10.1161/01.RES.63.1.135
[198] Fritz, T.; Wieners, C.; Seemann, G.; Steen, H.; Dossel, O., Simulation of the contraction of the ventricles in a human heart model including atria and pericardium, Biomech. Model. Mechanobiol., 13, 627-641, (2014) · doi:10.1007/s10237-013-0523-y
[199] Fung, Y., Biomechanics: Mechanical Properties of Living Tissues, pp., (1993), Springer · doi:10.1007/978-1-4757-2257-4
[200] Fung, Y. C.; Fronek, K.; Patitucci, P., Pseudoelasticity of arteries and the choice of its mathematical expression, Amer. J. Physiol., 237, H620-H631, (1979)
[201] Galvin, K.; Lee, H., Analysis and approximation of the cross model for quasi-Newtonian flows with defective boundary conditions, Appl. Math. Comput., 222, 244-254, (2013) · Zbl 1329.76107
[202] Galvin, K.; Lee, H.; Rebholz, L., Approximation of viscoelastic flows with defective boundary conditions, J. Non-Newton. Fluid Mech., 169/170, 104-113, (2012) · doi:10.1016/j.jnnfm.2011.12.002
[203] Gee, M.; Kuttler, U.; Wall, W., Truly monolithic algebraic multigrid for fluid-structure interaction, Int. J. Numer. Methods Engrg, 85, 987-1016, (2011) · Zbl 1217.74121 · doi:10.1002/nme.3001
[204] van der Geest, R.; Jansen, E.; Buller, V.; Reiber, J., Computers in Cardiology 1994, Automated detection of left ventricular epi- and endocardial contours in short-axis MR images, 33-36, (1994), IEEE
[205] Geiger, B., pp.
[206] Geneser, S.; Kirby, R.; Macleod, R., Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity, IEEE Trans. Biomed. Engrg, 55, 31-40, (2008) · doi:10.1109/TBME.2007.900563
[207] Gerardo-Giorda, L.; Mirabella, L.; Nobile, F.; Perego, M.; Veneziani, A., A model-based block-triangular preconditioner for the bidomain system in electrocardiology, J. Comput. Phys., 228, 3625-3639, (2009) · Zbl 1187.92053 · doi:10.1016/j.jcp.2009.01.034
[208] Gerardo-Giorda, L.; Nobile, F.; Vergara, C., Analysis and optimization of Robin-Robin partitioned procedures in fluid-structure interaction problems, SIAM J. Numer. Anal., 48, 2091-2116, (2010) · Zbl 1392.74075 · doi:10.1137/09076605X
[209] Gerbeau, J.-F.; Lombardi, D.; Schenone, E., Reduced order model in cardiac electrophysiology with approximated Lax pairs, Adv. Comput. Math., 41, 1103-1130, (2015) · Zbl 1336.65164 · doi:10.1007/s10444-014-9393-9
[210] Gervasio, P.; Saleri, F.; Veneziani, A., Algebraic fractional-step schemes with spectral methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 214, 347-365, (2006) · Zbl 1137.76338 · doi:10.1016/j.jcp.2005.09.018
[211] Ghanem, R.; Spanos, P., Stochastic Finite Elements: A Spectral Approach, pp., (2003), Dover · Zbl 0953.74608
[212] Gigante, G.; Vergara, C., Analysis and optimization of the generalized Schwarz method for elliptic problems with application to fluid-structure interaction, Numer. Math., 131, 369-404, (2015) · Zbl 1326.65169 · doi:10.1007/s00211-014-0693-2
[213] Giles, M., Acta Numerica, 24, Multilevel Monte Carlo methods, 259-328, (2015), Cambridge University Press · Zbl 1316.65010
[214] Giordana, S.; Sherwin, S.; Peiró, J.; Doorly, D.; Crane, J.; Lee, K.; Cheshire, N.; Caro, C., Local and global geometric influence on steady flow in distal anastomoses of peripheral bypass grafts, J. Biomech. Engrg, 127, 1087-1098, (2005) · doi:10.1115/1.2073507
[215] Girault, V.; Raviart, P., Finite Element Methods for Navier-Stokes Equations, pp., (1986), Springer · Zbl 0585.65077 · doi:10.1007/978-3-642-61623-5
[216] Glagov, S.; Zarins, C.; Giddens, D.; Ku, D., Hemodynamics and atherosclerosis: insights and perspectives gained from studies of human arteries, Arch. Pathol. Lab. Med., 112, 1018-1031, (1988)
[217] Glowinski, R.; Pan, T.; Periaux, J., A Lagrange multiplier/fictitious domain method for the numerical simulation of incompressible viscous flow around moving rigid bodies (I): case where the rigid body motions are known, CR Acad. Sci. I Math., 324, 361-369, (1997) · Zbl 0885.76073
[218] Gnyaneshwar, R.; Kumar, R.; Balakrishnan, K., Dynamic analysis of the aortic valve using a finite element model, Ann. Thorac. Surg., 73, 1122-1129, (2002) · doi:10.1016/S0003-4975(01)03588-3
[219] Goktepe, S.; Kuhl, E., Electromechanics of the heart: A unified approach to the strongly coupled excitation-contraction problem, Comput. Mech., 45, 227-243, (2010) · Zbl 1183.78031 · doi:10.1007/s00466-009-0434-z
[220] Goshtasby, A.; Turner, D., Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers, IEEE Trans. Med. Imaging, 14, 56-64, (1995) · doi:10.1109/42.370402
[221] Grandmont, C., pp.
[222] Griffith, B.; Hornung, R.; Mcqueen, D.; Peskin, C., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 10-419, (2007) · Zbl 1163.76041 · doi:10.1016/j.jcp.2006.08.019
[223] Griffith, B.; Luo, X.; Mcqueen, D.; Peskin, C., Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method, Int. J. Appl. Mech., 1, 137-176, (2009) · doi:10.1142/S1758825109000113
[224] Grinberg, L.; Cheever, E.; Anor, T.; Madsen, J.; Karniadakis, G., Modeling blood flow circulation in intracranial arterial networks: A comparative 3D/1D simulation study, Ann. Biomed. Engrg, 39, 297-309, (2010) · doi:10.1007/s10439-010-0132-1
[225] Grinberg, L.; Yakhot, A.; Karniadakis, G., Analyzing transient turbulence in a stenosed carotid artery by proper orthogonal decomposition, Ann. Biomed. Engrg, 37, 2200-2217, (2009) · doi:10.1007/s10439-009-9769-z
[226] Guccione, J.; Mcculloch, A.; Waldman, L., Passive material properties of intact ventricular myocardium determined from a cylindrical model, J. Biomech. Engrg, 113, 42-55, (1991) · doi:10.1115/1.2894084
[227] Guerciotti, B.; Vergara, C.; Azzimonti, L.; Forzenigo, L.; Buora, A.; Biondetti, P.; Domanin, M., Computational study of the fluid-dynamics in carotids before and after endarterectomy, J. Biomech., 195, 2088-2099, (2015)
[228] Guerciotti, B.; Vergara, C.; Ippolito, S.; Quarteroni, A.; Antona, C.; Scrofani, R., Computational study of the risk of restenosis in coronary bypasses, Biomech. Model. Mechanobiol., 16, 313-332, (2017) · doi:10.1007/s10237-016-0818-x
[229] Guermond, J.; Quartapelle, L., On the approximation of the unsteady Navier-Stokes equations by finite element projection methods, Numer. Math., 80, 207-238, (1998) · Zbl 0914.76051 · doi:10.1007/s002110050366
[230] Guermond, J.; Shen, J., Velocity-correction projection methods for incompressible flows, SIAM J. Numer. Anal., 41, 112-134, (2003) · Zbl 1130.76395 · doi:10.1137/S0036142901395400
[231] Guermond, J.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg, 195, 6011-6045, (2006) · Zbl 1122.76072 · doi:10.1016/j.cma.2005.10.010
[232] Guermond, J.; Minev, P.; Shen, J., Error analysis of pressure-correction schemes for the time-dependent Stokes equations with open boundary conditions, SIAM J. Numer. Anal., 43, 239-258, (2005) · Zbl 1083.76044 · doi:10.1137/040604418
[233] Guermond, J.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg, 195, 6011-6045, (2006) · Zbl 1122.76072 · doi:10.1016/j.cma.2005.10.010
[234] Guidoboni, G.; Glowinski, R.; Cavallini, N.; Canic, S., Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comput. Phys., 228, 6916-6937, (2009) · Zbl 1261.76056 · doi:10.1016/j.jcp.2009.06.007
[235] Gultekin, O.; Sommer, G.; Holzapfel, G., An orthotropic viscoelastic model for the passive myocardium: continuum basis and numerical treatment, Comput. Methods Biomech. Biomed. Engrg, 19, 1647-1664, (2016) · doi:10.1080/10255842.2016.1176155
[236] Gunzburger, M., Perspectives in Flow Control and Optimization, pp., (2003), SIAM · Zbl 1088.93001
[237] Gunzburger, M.; Webster, C.; Zhang, G., Acta Numerica, 23, Stochastic finite element methods for partial differential equations with random input data, 521-650, (2014), Cambridge University Press · Zbl 1398.65299
[238] Gupta, A.; von Kurowski, L.; Singh, A.; Geiger, D.; Liang, C.; Chiu, M.; Adler, L.; Haacke, M.; Wilson, D., Computers in Cardiology, Cardiac MR image segmentation using deformable models, 747-750, (1993), IEEE
[239] Gurev, V.; Pathmanathan, P.; Fattebert, J.; Wen, H.; Magerlein, J.; Gray, R.; Richards, D.; Rice, J., A high-resolution computational model of the deforming human heart, Biomech. Model. Mechanobiol., 14, 132-140, (2015) · doi:10.1007/s10237-014-0639-8
[240] Haggerty, C.; Mirabella, L.; Restrepo, M.; de Zélicourt, D.; Rossignac, J.; Sotiropoulos, F.; Spray, T.; Kanter, K.; Fogel, M.; Yoganathan, A.; Holzapfel, G.; Kuhl, E., Computer Models in Biomechanics: From Nano to Macro, Patient-specific surgery planning for the fontan procedure, 217-228, (2013), Springer · doi:10.1007/978-94-007-5464-5_16
[241] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. Methods Appl. Mech. Engrg, 191, 5537-5552, (2002) · Zbl 1035.65125 · doi:10.1016/S0045-7825(02)00524-8
[242] Hansbo, A.; Hansbo, P.; Larson, M., A finite element method on composite grids based on nitsche’s method, ESAIM: Math. Model. Numer. Anal., 37, 495-514, (2003) · Zbl 1031.65128 · doi:10.1051/m2an:2003039
[243] Hariton, I.; de Botton, G.; Gasser, T.; Holzapfel, G., Stress-driven collagen fiber remodeling in arterial walls, Biomech. Model. Mechanobiol., 3, 163-175, (2006)
[244] de Hart, J.; Baaijens, F.; Peters, G.; Schreurs, P., A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve, J. Biomech., 36, 699-712, (2003) · doi:10.1016/S0021-9290(02)00448-7
[245] de Hart, J.; Peters, G.; Schreurs, P.; Baaijens, F., A two-dimensional fluid-structure interaction model of the aortic value, J. Biomech., 33, 1079-1088, (2000) · doi:10.1016/S0021-9290(00)00068-3
[246] Haruguchi, H.; Teraoka, S., Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: A review, J. Artif. Organs, 6, 227-235, (2003) · doi:10.1007/s10047-003-0232-x
[247] He, X.; Ku, D.; Moore, J. Jr, Simple calculation of the velocity profiles for pulsatile flow in a blood vessel using Mathematica, Ann. Biomed. Engrg, 21, 45-49, (1993) · doi:10.1007/BF02368163
[248] Heil, M., An efficient solver for the fully coupled solution of large-displacement fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg, 193, 1-23, (2004) · Zbl 1137.74439 · doi:10.1016/j.cma.2003.09.006
[249] Hesthaven, J.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, pp., (2016), Springer · Zbl 1329.65203 · doi:10.1007/978-3-319-22470-1
[250] Heywood, J.; Rannacher, R.; Turek, S., Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 22, 325-352, (1996) · Zbl 0863.76016 · doi:10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
[251] Hilgemann, D.; Noble, D., Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms, Proc. Royal Soc. London B, 230, 163-205, (1987) · doi:10.1098/rspb.1987.0015
[252] Hillen, B.; Hoogstraten, H.; Post, L., A wave propagation model of blood flow in large vessels using an approximate velocity profile function, J. Biomech., 19, 187-194, (1986) · doi:10.1016/0021-9290(86)90151-X
[253] Hintermüller, M.; Kunisch, K.; Spasov, Y.; Volkwein, S., Dynamical systems-based optimal control of incompressible fluids, Int. J. Numer. Methods Fluids, 46, 345-359, (2004) · Zbl 1081.76016 · doi:10.1002/fld.725
[254] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints, pp., (2009), Springer · Zbl 1167.49001
[255] Hirt, C.; Amsden, A.; Cook, J., An arbitrary Lagrangian Eulerian computing method for all flow speeds, J. Comput. Phys., 69, 277-324, (1974) · Zbl 0292.76018
[256] Hodgkin, A.; Huxley, A., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117, 500-544, (1952) · doi:10.1113/jphysiol.1952.sp004764
[257] Holzapfel, G., Nonlinear Solid Mechanics: A Continuum Approach for Engineering, pp., (2000), Wiley · Zbl 0980.74001
[258] Holzapfel, G.; Gasser, T., A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects, and applications, Comput. Methods Appl. Mech. Engrg, 190, 4379-4403, (2001) · doi:10.1016/S0045-7825(00)00323-6
[259] Holzapfel, G.; Ogden, R., Constitutive modelling of passive myocardium: A structurally based framework for material characterization, Philos. Trans. Royal Soc. A, 367, 3445-3475, (2009) · Zbl 1185.74060 · doi:10.1098/rsta.2009.0091
[260] Holzapfel, G.; Ogden, R., Constitutive modelling of arteries, Proc. Royal Soc. Lond. A: Math. Phys. Engrg Sci., 466, 1551-1596, (2010) · Zbl 1197.74075 · doi:10.1098/rspa.2010.0058
[261] Holzapfel, G.; Gasser, T.; Ogden, R., A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61, 1-48, (2000) · Zbl 1023.74033 · doi:10.1023/A:1010835316564
[262] Hopf, E., Über die anfangswertaufgabe für die hydrodynamischen grundgliechungen, Math. Nachrichten, 4, 213-231, (1951) · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[263] Hoteit, I.; Pham, D.; Blum, J., A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific, J. Marine Systems, 36, 101-127, (2002) · doi:10.1016/S0924-7963(02)00129-X
[264] Houtemaker, P.; Zhang, F., Review of the ensemble Kalman filter for atmospheric data assimilation, Monthly Weather Rev., 122, 4489-4532, (2016)
[265] Hsu, M.; Kamensky, D.; Bazilevs, Y.; Sacks, M.; Hughes, T., Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation, Comput. Mech., 54, 1055-1071, (2014) · Zbl 1311.74039 · doi:10.1007/s00466-014-1059-4
[266] Huberts, W.; de Jonge, C.; van der Linden, W.; Inda, M.; Passera, K.; Tordoir, J.; van de Vosse, F.; Bosboom, E., A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery, B: identification of possible generic model parameters, Med. Engrg Phys., 35, 827-837, (2013) · doi:10.1016/j.medengphy.2012.08.012
[267] Huberts, W.; de Jonge, C.; van der Linden, W.; Inda, M.; Tordoir, J.; van de Vosse, F.; Bosboom, E., A sensitivity analysis of a personalized pulse wave propagation model for arteriovenous fistula surgery, A: identification of most influential model parameters, Med. Engrg Phys., 35, 810-826, (2013) · doi:10.1016/j.medengphy.2012.08.013
[268] Hughes, T., pp.
[269] Hughes, T., Multiscale phenomena: green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized formulations, Comput. Methods Appl. Mech. Engrg, 127, 387-401, (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[270] Hughes, T.; Lubliner, J., On the one-dimensional theory of blood flow in the larger vessels, Math. Biosci., 18, 161-170, (1973) · Zbl 0262.92004 · doi:10.1016/0025-5564(73)90027-8
[271] Hughes, T.; Mazzei, L.; Jansen, K., Large eddy simulation and the variational multiscale method, Comput. Vis. Sci., 3, 47-59, (2000) · Zbl 0998.76040 · doi:10.1007/s007910050051
[272] Huiskamp, G., Simulation of depolarization in a membrane- equations-based model of the anisotropic ventricle, IEEE Trans. Biomed. Engrg, 45, 847-855, (1998) · doi:10.1109/10.686792
[273] Humpherys, J.; Redd, P.; West, J., A fresh look at the Kalman filter, SIAM Review, 54, 801-823, (2012) · Zbl 1253.93127 · doi:10.1137/100799666
[274] Humphrey, J.; Yin, F., On constitutive relations and finite deformations of passive cardiac tissue, I: A pseudostrain-energy function, J. Biomech. Engrg, 109, 298-304, (1987) · doi:10.1115/1.3138684
[275] Hunter, P.; Nash, M.; Sands, G.; Panfilov, A.; Holden, A., Computational Biology of the Heart, Computational electromechanics of the heart, 345-407, (1997), Wiley-Blackwell · Zbl 0905.92005
[276] Iaizzo, P., Handbook of Cardiac Anatomy, Physiology, and Devices, pp., (2009), Springer · doi:10.1007/978-1-60327-372-5
[277] Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A., Unified notation for data assimilation: operational, sequential and variational, J. Met. Soc. Japan, 75, 181-189, (1997) · doi:10.2151/jmsj1965.75.1B_181
[278] Iglesias, M.; Law, K.; Stuart, A., Ensemble Kalman methods for inverse problems, Inverse Problems, 29, pp., (2013) · Zbl 1311.65064 · doi:10.1088/0266-5611/29/4/045001
[279] Ijiri, T.; Ashihara, T.; Yamaguchi, T.; Takayama, K.; Igarashi, T.; Shimada, T.; Namba, T.; Haraguchi, R.; Nakazawa, K., A procedural method for modeling the purkinje fibers of the heart, J. Physiol. Sci., 58, 90-100, (2008) · doi:10.2170/physiolsci.RP003208
[280] and Isaksen, J., Bazilevs, Y., Kvamsdal, T., Zhang, Y., Kaspersen, J., Waterloo, K., Romner, B. and Ingebrigtsen, T. (2008), ‘Determination of wall tension in cerebral artery aneurysms by numerical simulation’, Stroke39, 3172-3178. doi:10.1161/STROKEAHA.107.503698
[281] Johnstone, R.; Chang, E.; Bardenet, R.; de Boer, T.; Gavaghan, D.; Pathmanathan, P.; Clayton, R.; Mirams, G., Uncertainty and variability in models of the cardiac action potential: can we build trustworthy models?, J. Molec. Cell. Cardiol., 96, 49-62, (2016) · doi:10.1016/j.yjmcc.2015.11.018
[282] Julier, S.; Uhlmann, J., Unscented filtering and nonlinear estimation, Proc. IEEE, 92, 401-422, (2004) · doi:10.1109/JPROC.2003.823141
[283] Julier, S.; Uhlmann, J.; Durrant-Whyte, H., Proceedings of the 1995 American Control Conference, 3, A new approach for filtering nonlinear systems, 1628-1632, (1995) · doi:10.1109/ACC.1995.529783
[284] Julier, S.; Uhlmann, J.; Durrant-Whyte, H., A new method for the nonlinear transformation of means and covariance in filters and estimators, IEEE Trans. Automat. Control, 45, 477-482, (2000) · Zbl 0973.93053 · doi:10.1109/9.847726
[285] Juntunen, M.; Stenberg, R., Nitsche’s method for general boundary conditions, Math. Comp., 78, 1353-1374, (2009) · Zbl 1198.65223 · doi:10.1090/S0025-5718-08-02183-2
[286] Kaipio, J.; Somersalo, E., Statistical and Computational Inverse Problems, pp., (2005), Springer · Zbl 1068.65022
[287] Kalman, R., A new approach to linear filtering and prediction problems, ASME. J. Basic Engrg, 82, 35-45, (1960) · doi:10.1115/1.3662552
[288] Karniadakis, G.; Israeli, M.; Orszag, S., High order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 59, 414-443, (1991) · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[289] Keener, J., An eikonal-curvature equation for action potential propagation in myocardium, J. Math. Biol., 29, 629-651, (1991) · Zbl 0744.92015 · doi:10.1007/BF00163916
[290] Keener, J.; Bogar, K., A numerical method for the solution of the bidomain equations in cardiac tissue, Chaos, 8, 234-241, (1998) · Zbl 1069.92507 · doi:10.1063/1.166300
[291] Kefayati, S.; Holdsworth, D.; Poepping, T., Turbulence intensity measurements using particle image velocimetry in diseased carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration, J. Biomech., 47, 253-263, (2014) · doi:10.1016/j.jbiomech.2013.09.007
[292] Keldermann, R.; Nash, M.; Panfilov, A., Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems, Physica D: Nonlinear Phenomena, 238, 1000-1007, (2009) · Zbl 1165.92006 · doi:10.1016/j.physd.2008.08.017
[293] Kelley, C., Iterative Methods for Optimization, pp., (1999), SIAM · Zbl 0934.90082 · doi:10.1137/1.9781611970920
[294] Kelly, D.; Law, K.; Stuart, A., Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time, Nonlinearity, 27, pp., (2014) · Zbl 1305.62323 · doi:10.1088/0951-7715/27/10/2579
[295] Kennedy, M.; O’Hagan, A., Predicting the output from a complex computer code when fast approximations are available, Biometrika, 87, 1-13, (2000) · Zbl 0974.62024 · doi:10.1093/biomet/87.1.1
[296] Kerckoffs, B.; Faris, O.; Boveenderd, P.; Prinzen, F.; Smits, K.; Arts, T., Timing of depolarization and contraction in the paced canine left ventricle, J. Cardiovasc. Electrophysiol., 14, S188-S195, (2003) · doi:10.1046/j.1540.8167.90310.x
[297] Keynton, R.; Evancho, M.; Sims, R.; Rodway, N.; Gobin, A.; Rittgers, S., Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study, J. Biomech. Engrg, 123, 464-473, (2001) · doi:10.1115/1.1389461
[298] Khalafvand, S.; Zhong, L.; Ng, E., Three-dimensional CFD/MRI modeling reveals that ventricular surgical restoration improves ventricular function by modifying intraventricular blood flow, Int. J. Numer. Methods Biomed. Engrg, 30, 1044-1056, (2014) · doi:10.1002/cnm.2643
[299] Kim, H.; Lu, J.; Sacks, M.; Chandran, K., Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model, J. Biomech., 36, 262-275, (2008)
[300] Kim, H.; Vignon-Clementel, I.; Figueroa, C.; Ladisa, J.; Jansen, K.; Feinstein, J.; Taylor, C., On coupling a lumped parameter heart model and a three-dimensional finite element aorta model, Ann. Biomed. Engrg, 37, 2153-2169, (2009) · doi:10.1007/s10439-009-9760-8
[301] Kleinstreuer, C., Biofluid Dynamics: Principles and Selected Applications, pp., (2006), CRC Press · doi:10.1201/b15820
[302] Kohl, P.; Sachs, F., Mechanoelectric feedback in cardiac cells, Philos. Trans. Royal Soc. A, 359, 1173-1185, (2001) · Zbl 0991.00022 · doi:10.1098/rsta.2001.0824
[303] Kohl, P.; Hunter, P.; Noble, D., Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models, Prog. Biophys. Molec. Biol., 71, 91-138, (1999) · doi:10.1016/S0079-6107(98)00038-8
[304] Konukoglu, E.; Relan, J.; Cilingir, U.; Menze, B.; Chinchapatnam, P.; Jadidi, A.; Cochet, H.; Hocini, M.; Delingette, H.; Jaïs, P.; Haïssaguerre, M.; Ayache, N.; Sermesant, M., Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology, Prog. Biophys. Molec. Biol., 107, 134-146, (2011) · doi:10.1016/j.pbiomolbio.2011.07.002
[305] Korakianitis, T.; Shi, Y., A concentrated parameter model for the human cardiovascular system including heart valve dynamics and atrioventricular interaction, Med. Engrg Phys., 28, 613-628, (2006) · doi:10.1016/j.medengphy.2005.10.004
[306] Korakianitis, T.; Shi, Y., Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves, J. Biomech., 39, 1964-1982, (2006) · doi:10.1016/j.jbiomech.2005.06.016
[307] Koutsourelakis, P., Accurate uncertainty quantification using inaccurate models, SIAM J. Sci. Comput., 31, 3274-3300, (2009) · Zbl 1200.65002 · doi:10.1137/080733565
[308] Krishnamurthy, A.; Villongco, C.; Chuang, J.; Frank, L.; Nigam, V.; Belezzuoli, E.; Stark, P.; Krummen, D.; Narayan, S.; Omens, J.; McCulloch, A.; Kerckhoffs, R., Patient-specific models of cardiac biomechanics, J. Comput. Phys., 244, 4-21, (2013) · doi:10.1016/j.jcp.2012.09.015
[309] Kufahl, R.; Clark, M., A circle of willis simulation using distensible vessels and pulsatile flow, J. Biomech. Engrg, 107, 112-122, (1985) · doi:10.1115/1.3138531
[310] Kuhl, E.; Holzapfel, G., A continuum model for remodeling in living structures, J. Mater. Sci., 21, 8811-8823, (2006)
[311] Kunisch, K.; Rund, A., Time optimal control of the monodomain model in cardiac electrophysiology, IMA J. Appl. Math., 80, 1664-1683, (2015) · Zbl 1338.35436 · doi:10.1093/imamat/hxv010
[312] Kunisch, K.; Vexler, B., Optimal vortex reduction for instationary flows based on translation invariant cost functionals, SIAM J. Control Optim., 46, 1368-1397, (2007) · Zbl 1159.35398 · doi:10.1137/050632774
[313] Kunzelman, K.; Cochran, R., Mechanical properties of basal and marginal mitral valve chordae tendineae, ASAIO Trans., 36, pp., (1990)
[314] Kunzelman, K.; Cochran, R.; Chuong, C.; Ring, W.; Eberhart, R., Finite element analysis of the mitral valve, J. Heart Valve Disease, 2, 326-340, (1993)
[315] Kuttler, U.; Wall, W., Fixed-point fluid-structure interaction solvers with dynamic relaxation, Comput. Mech., 43, 61-72, (2008) · Zbl 1236.74284 · doi:10.1007/s00466-008-0255-5
[316] Kuttler, U.; Gee, M.; Forster, C.; Comerford, A.; Wall, W., Coupling strategies for biomedical fluid-structure interaction problems, Int. J. Numer. Methods Biomed. Engrg, 26, 305-321, (2010) · Zbl 1183.92008 · doi:10.1002/cnm.1281
[317] Laadhari, A.; Quarteroni, A., Numerical modeling of heart valves using resistive Eulerian surfaces, Int. J. Numer. Methods Biomed. Engrg, 32, pp., (2016) · doi:10.1002/cnm.2743
[318] Lal, R.; Mohammadi, B.; Nicoud, F., Data assimilation for identification of cardiovascular network characteristics, Int. J. Numer. Methods Biomed. Engrg., pp., (2016)
[319] Lancellotti, R.; Vergara, C.; Valdettaro, L.; Bose, S.; Quarteroni, A., pp.
[320] Land, S.; Niederer, S.; Aronsen, J.; Espe, E.; Zhang, L.; Louch, W.; Sjaastad, I.; Sejersted, O.; Smith, N., An analysis of deformation-dependent electromechanical coupling in the mouse heart, J. Physiol., 590, 4553-4569, (2012) · doi:10.1113/jphysiol.2012.231928
[321] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., Boundary control and shape optimization for the robust design of bypass anastomoses under uncertainty, ESAIM Math. Model. Numer. Anal., 47, 1107-1131, (2013) · Zbl 1402.92246 · doi:10.1051/m2an/2012059
[322] Lassila, T.; Manzoni, A.; Quarteroni, A.; Rozza, G., A reduced computational and geometrical framework for inverse problems in haemodynamics, Int. J. Numer. Methods Biomed. Engrg, 29, 741-776, (2013) · doi:10.1002/cnm.2559
[323] Lassila, T.; Quarteroni, A.; Rozza, G., A reduced basis model with parametric coupling for fluid-structure interaction problems, SIAM J. Sci. Comput., 34, A1187-A1213, (2012) · Zbl 1390.74053 · doi:10.1137/110819950
[324] Law, K.; Stuart, A.; Zygalakis, K., Data Assimilation: A Mathematical Introduction, pp., (2015), Springer · Zbl 1353.60002 · doi:10.1007/978-3-319-20325-6
[325] Le, T.; Sotiropoulos, F., Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle, J. Comput. Phys., 224, 41-62, (2013) · Zbl 1377.76045 · doi:10.1016/j.jcp.2012.08.036
[326] Le Dimet, F.-X.; Talagrand, O., Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects, Tellus A, 38, 97-110, (1986) · doi:10.3402/tellusa.v38i2.11706
[327] Le Maître, O.; Knio, O., Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, pp., (2010), Springer · Zbl 1193.76003 · doi:10.1007/978-90-481-3520-2
[328] Lee, H., Optimal control for quasi-Newtonian flows with defective boundary conditions, Comput. Methods Appl. Mech. Engrg, 200, 2498-2506, (2011) · Zbl 1230.76009 · doi:10.1016/j.cma.2011.04.019
[329] Lee, J.; Cookson, A.; Roy, I.; Kerfoot, E.; Asner, L.; Vigueras, G.; Sochi, T.; Deparis, S.; Michler, C.; Smith, N.; Nordsletten, D., Multiphysics computational modeling in cheart, SIAM J. Sci. Comput., 38, C150-C178, (2016) · Zbl 1358.92015 · doi:10.1137/15M1014097
[330] Lee, S.; Lee, S.; Fischer, P.; Bassiouny, H.; Loth, F., Direct numerical simulation of transitional flow in a stenosed carotid bifurcation, J. Biomech., 41, 2551-2561, (2008) · doi:10.1016/j.jbiomech.2008.03.038
[331] Legato, M., Ultrastructure of the atrial, ventricular, and purkinje cell, with special reference to the genesis of arrhythmias, Circulation, 47, 178-189, (1973) · doi:10.1161/01.CIR.47.1.178
[332] Leguy, C.; Bosboom, A.; Belloum, A.; Hoeks, A.; van de Vosse, F., Global sensitivity analysis of a wave propagation model for arm arteries, Med. Engrg Phys., 33, 1008-1016, (2011) · doi:10.1016/j.medengphy.2011.04.003
[333] Lei, M.; Archie, J.; Kleinstreuer, C., Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis, J. Vasc. Surg., 25, 637-646, (1997) · doi:10.1016/S0741-5214(97)70289-1
[334] Leiva, J.; Blanco, P.; Buscaglia, G., Partitioned analysis for dimensionally-heterogeneous hydraulic networks, Multiscale Model. Simul., 9, 872-903, (2011) · Zbl 1300.76011 · doi:10.1137/100809301
[335] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248, (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[336] Lesage, D.; Angelini, E.; Bloch, I.; Funka-Lea, G., A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes, Med. Image Anal., 13, 819-845, (2009) · doi:10.1016/j.media.2009.07.011
[337] Leuprecht, A.; Perktold, K.; Prosi, M.; Berk, T.; Trubel, W.; Schima, H., Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts, J. Biomech., 2, 225-236, (2002) · doi:10.1016/S0021-9290(01)00194-4
[338] Leveque, R., Numerical Methods for Conservation Laws, pp., (1992), Birkhäuser · Zbl 0847.65053 · doi:10.1007/978-3-0348-8629-1
[339] Li, C.; Vuik, C., Eigenvalue analysis of the simple preconditioning for incompressible flow, Numer. Linear Algebra Appl., 11, 511-523, (2004) · Zbl 1164.65398 · doi:10.1002/nla.358
[340] Li, D.; Robertson, A., A structural multi-mechanism damage model for cerebral arterial tissue, J. Biomech. Engrg, 131, pp., (2013)
[341] Liang, F.; Liu, H., Simulation of hemodynamic responses to the valsalva maneuver: an integrative computational model of the cardiovascular system and the autonomic nervous system, J. Physiol. Sci., 1, 45-65, (2006) · doi:10.2170/physiolsci.RP001305
[342] Lions, J.; Prodi, G., Un théorème d’existence et d’unicité dans LES équations de Navier-Stokes en dimension 2, CR Acad. Sci. Paris, 248, 3519-3521, (1959) · Zbl 0091.42105
[343] Liu, Y.; Charles, C.; Gracia, M.; Gregersen, H.; Kassab, G. S., Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment, Amer. J. Physiol.: Heart Circ. Physiol., 293, H3290-H3300, (2007)
[344] Lombardi, D., Inverse problems in 1D hemodynamics on systemic networks: A sequential approach, Int. J. Numer. Methods Biomed. Engrg, 30, 160-179, (2014) · doi:10.1002/cnm.2596
[345] Lorenzo-Valdés, M.; Sanchez-Ortiz, G.; Elkington, A.; Mohiaddin, R.; Rueckert, D., Segmentation of 4D cardiac MR images using a probabilistic atlas and the EM algorithm, Med. Image Anal., 8, 255-265, (2004) · doi:10.1016/j.media.2004.06.005
[346] Loth, F.; Fischer, P.; Bassiouny, H., Blood flow in end-to-side anastomoses, Annu. Rev. Fluid. Mech., 40, 367-393, (2008) · Zbl 1214.76014 · doi:10.1146/annurev.fluid.40.111406.102119
[347] Luo, C.; Rudy, Y., A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction, Circ. Res., 68, 1501-1526, (1991) · doi:10.1161/01.RES.68.6.1501
[348] Luo, C.; Rudy, Y., A dynamic model of the cardiac ventricular action potential, I: simulations of ionic currents and concentration changes, Circ. Res., 74, 1071-1096, (1994) · doi:10.1161/01.RES.74.6.1071
[349] Luo, C.; Rudy, Y., A dynamic model of the cardiac ventricular action potential, II: afterdepolarizations, triggered activity, and potentiation, Circ. Res., 74, 1097-1113, (1994) · doi:10.1161/01.RES.74.6.1097
[350] Lykaser, M.; Nielsen, B., Towards a level set framework for infarction modeling: an inverse problem, Int. J. Numer. Anal. Model., 3, 377-394, (2006) · Zbl 1101.35079
[351] Maclachlan, M.; Nielsen, B.; Lysaker, M.; Tveito, A., Computing the size and location of myocardial ischemia using measurements of ST-segment shift, IEEE Trans. Biomed. Engrg, 53, 1024-1031, (2006) · doi:10.1109/TBME.2005.863928
[352] Maday, Y.; Quarteroni, A.; Formaggia, L.; Veneziani, A., Analysis of coupled models for fluid-structure interaction of internal flows, 279-306, (2009), Springer
[353] Mahmoud, A.; El-Barkouky, A.; Farag, H.; Graham, J.; Farag, A., 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), A non-invasive method for measuring blood flow rate in superficial veins from a single thermal image, 354-359, (2013), IEEE · doi:10.1109/CVPRW.2013.60
[354] Malossi, A., pp.
[355] Malossi, A.; Blanco, P.; Deparis, S., A two-level time step technique for the partitioned solution of one-dimensional arterial networks, Comput. Methods Appl. Mech. Engrg, 237-240, 212-226, (2012) · Zbl 1253.76141 · doi:10.1016/j.cma.2012.05.017
[356] Malossi, A.; Blanco, P.; Crosetto, P.; Deparis, S.; Quarteroni, A., Implicit coupling of one-dimensional and three-dimensional blood flow models with compliant vessels, Multiscale Model. Simul., 11, 474-506, (2013) · Zbl 1310.92017 · doi:10.1137/120867408
[357] Mansi, T.; Voigt, I.; Georgescu, B.; Zheng, X.; Mengue, E.; Hackl, M.; Ionasec, R.; Noack, T.; Seeburger, J.; Comaniciu, D., An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to mitralclip intervention planning, Med. Image Anal., 16, 1330-1346, (2012) · doi:10.1016/j.media.2012.05.009
[358] Manzoni, A., pp.
[359] Manzoni, A.; Lassila, T.; Quarteroni, A.; Rozza, G.; Bock, G.; Hoang, P.; Rannacher, R.; Schlöder, P., Modeling, Simulation and Optimization of Complex Processes, HPSC 2012: Proceedings of the Fifth International Conference on High Performance Scientific Computing, A reduced-order strategy for solving inverse Bayesian shape identification problems in physiological flows, 145-155, (2014), Springer
[360] Manzoni, A.; Pagani, S.; Lassila, T., Accurate solution of Bayesian inverse uncertainty quantification problems combining reduced basis methods and reduction error models, SIAM/ASA J. Uncert. Quant., 4, 380-412, (2016) · Zbl 1383.35251 · doi:10.1137/140995817
[361] Manzoni, A.; Quarteroni, A.; Rozza, G., Model reduction techniques for fast blood flow simulation in parametrized geometries, Int. J. Numer. Methods Biomed. Engrg, 28, 604-625, (2012) · doi:10.1002/cnm.1465
[362] Manzoni, A.; Quarteroni, A.; Rozza, G., Shape optimization of cardiovascular geometries by reduced basis methods and free-form deformation techniques, Int. J. Numer. Methods Fluids, 70, 646-670, (2012) · Zbl 1412.76031 · doi:10.1002/fld.2712
[363] Marchesseau, S.; Delingette, H.; Sermesant, M.; Ayache, N., Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform, Biomech. Model. Mechanobiol., 12, 815-831, (2012) · doi:10.1007/s10237-012-0446-z
[364] Marchesseau, S.; Delingette, H.; Sermesant, M.; Cabrera-Lozoya, R.; Tobon-Gomez, C.; Moireau, P.; Figueras i Ventura, R.; Lekadir, K.; Hernandez, A.; Garreau, M.; Donal, E.; Leclercq, C.; Duckett, S.; Rhode, K.; Rinaldi, C.; Frangi, A.; Razavi, R.; Chapelle, D.; Ayache, N., Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes, Med. Image Anal., 17, 816-829, (2013) · doi:10.1016/j.media.2013.04.012
[365] Mardal, K.; Nielsen, B.; Cai, X.; Tveito, A., Semi-implicit time-discretization schemes for the bidomain modelan order optimal solver for the discretized bidomain equations, Numer. Linear Algebra Appl., 14, 83-98, (2007) · Zbl 1199.65111 · doi:10.1002/nla.501
[366] Margaris, K.; Black, R., Modelling the lymphatic system: challenges and opportunities, J. Royal Soc. Interface, 69, 601-612, (2012) · doi:10.1098/rsif.2011.0751
[367] Marom, G., Numerical methods for fluid-structure interaction models of aortic valves, Arch. Comput. Methods Engrg, 22, 595-620, (2015) · Zbl 1348.74099 · doi:10.1007/s11831-014-9133-9
[368] Marsden, A., Optimization in cardiovascular modeling, Annu. Rev. Fluid Mech., 46, 519-546, (2014) · Zbl 1297.76202 · doi:10.1146/annurev-fluid-010313-141341
[369] Marsden, A.; Feinstein, J.; Taylor, C., A computational framework for derivative-free optimization of cardiovascular geometries, Comput. Methods Appl. Mech. Engrg, 197, 1890-1905, (2008) · Zbl 1194.76296 · doi:10.1016/j.cma.2007.12.009
[370] Martin, V.; Clément, F.; Decoene, A.; Gerbeau, J.-F., Parameter identification for a one-dimensional blood flow model, ESAIM Proc., 14, 174-200, (2005) · Zbl 1070.92015 · doi:10.1051/proc:2005014
[371] Matthys, K.; Alastruey, J.; Peiró, J.; Khir, A.; Segers, P.; Verdonck, P.; Parker, K.; Sherwin, S., Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements, J. Biomech., 40, 3476-3486, (2007) · doi:10.1016/j.jbiomech.2007.05.027
[372] Maury, B., The Respiratory System in Equations, pp., (2013), Springer · Zbl 1312.92005 · doi:10.1007/978-88-470-5214-7
[373] May-Newman, K.; Yin, F., A constitutive law for mitral valve tissue, J. Biomech. Engrg, 120, 38-47, (1998) · doi:10.1115/1.2834305
[374] May-Newman, K.; Lam, C.; Yin, F., A hyperelastic constitutive law for aortic valve tissue, J. Biomech. Engrg, 131, pp., (2009) · doi:10.1115/1.3127261
[375] Merryman, W.; Huang, H.; Schoen, F.; Sacks, M., The effects of cellular contraction on aortic valve leaflet flexural stiffness, J. Biomech., 39, 88-96, (2006) · doi:10.1016/j.jbiomech.2004.11.008
[376] Migliavacca, F.; Dubini, G., Computational modeling of vascular anastomoses, Biomech. Model. Mechanobiol., 3, 235-250, (2005) · doi:10.1007/s10237-005-0070-2
[377] Migliavacca, F.; Balossino, R.; Pennati, G.; Dubini, G.; Hsia, T.; de Leval, M.; Bove, E., Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery, J. Biomech., 39, 1010-1020, (2006) · doi:10.1016/j.jbiomech.2005.02.021
[378] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261, (2005) · Zbl 1117.76049 · doi:10.1146/annurev.fluid.37.061903.175743
[379] Mittal, R.; Seo, J.; Vedula, V.; Choi, Y.; Liu, H.; Huang, H.; Jain, S.; Younes, L.; Abraham, T.; George, R., Computational modeling of cardiac hemodynamics: current status and future outlook, J. Comput. Phys., 305, 1065-1082, (2016) · Zbl 1349.92010 · doi:10.1016/j.jcp.2015.11.022
[380] Moireau, P.; Chapelle, D., Reduced-order unscented Kalman filtering with application to parameter identification in large-dimensional systems, ESAIM Control Optim. Calc. Var., 17, 380-405, (2011) · Zbl 1243.93114 · doi:10.1051/cocv/2010006
[381] Moireau, P.; Bertoglio, C.; Xiao, N.; Figueroa, C.; Taylor, C.; Chapelle, D.; Gerbeau, J.-F., Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data, Biomech. Model. Mechanobiol., 12, 475-496, (2013) · doi:10.1007/s10237-012-0418-3
[382] Tallec Moireau, P., Chapelle, D. and Le, P. (2008), ‘Joint state and parameter estimation for distributed mechanical systems’, Comput. Methods Appl. Mech. Engrg197, 659-677. doi:10.1016/j.cma.2007.08.021 · Zbl 1169.74439
[383] Tallec Moireau, P., Chapelle, D. and Le, P. (2009), ‘Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging’, Inverse Problems25, 035010. doi:10.1088/0266-5611/25/3/035010 · Zbl 1169.35393
[384] Moireau, P.; Xiao, N.; Astorino, M.; Figueroa, C.; Chapelle, D.; Taylor, C.; Gerbeau, J.-F., External tissue support and fluid-structure simulation in blood flows, Biomech. Model. Mechanobiol., 11, 1-18, (2012) · doi:10.1007/s10237-011-0289-z
[385] Moore, J.; Steinman, D.; Ethier, C., Computational blood flow modelling: errors associated with reconstructing finite element models from magnetic resonance images, J. Biomech., 31, 179-184, (1997) · doi:10.1016/S0021-9290(97)00125-5
[386] Moradkhani, H.; Sorooshian, S.; Gupta, H.; Houser, P., Dual state-parameter estimation of hydrological models using ensemble Kalman filter, Adv. Water Resour., 28, 135-147, (2005) · doi:10.1016/j.advwatres.2004.09.002
[387] Morbiducci, U.; Ponzini, R.; Rizzo, G.; Cadioli, M.; Esposito, A.; De Cobelli, F.; Del Maschio, A.; Montevecchi, F.; Redaelli, A., In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging, Ann. Biomed. Engrg, 37, 516-531, (2009) · doi:10.1007/s10439-008-9609-6
[388] Mozaffarian, D.; Benjamin, E.; Go, A.; Arnett, D.; Blaha, M.; Cushman, M.; Das, S.; de Ferranti, S.; Després, J.-P.; Fullerton, H.; Howard, V.; Huffman, M.; Isasi, C.; Jiménez, M.; Judd, S.; Kissela, B.; Lichtman, J.; Lisabeth, L.; Liu, S.; Mackey, R.; Magid, D.; McGuire, D.; Mohler, E.; Moy, C.; Muntner, P.; Mussolino, M.; Nasir, K.; Neumar, R.; Nichol, G.; Palaniappan, L.; Pandey, D.; Reeves, M.; Rodriguez, C.; Rosamond, W.; Sorlie, P.; Stein, J.; Towfighi, A.; Turan, T.; Virani, S.; Woo, D.; Yeh, R.; Turner, M., Heart disease and stroke statistics: 2016 update, Circulation, 133, 447-454, (2015) · doi:10.1161/CIR.0000000000000366
[389] Muller, J.; Sahni, O.; Lia, X.; Jansen, K.; Shephard, M.; Taylor, C., Anisotropic adaptive finite element method for modelling blood flow, Comput. Methods Biomech. Biomed. Engrg, 8, 295-305, (2005) · doi:10.1080/10255840500264742
[390] Muller, L.; Toro, E., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int. J. Numer Methods Biomed. Engrg, 29, 1388-1411, (2013) · doi:10.1002/cnm.2580
[391] Muller, L.; Toro, E., A global multiscale mathematical model for the human circulation with emphasis on the venous system, Int. J. Numer. Methods Biomed. Engrg, 30, 681-725, (2014) · doi:10.1002/cnm.2622
[392] Munteanu, M.; Pavarino, L.; Scacchi, S., A scalable Newton-Krylov-Schwarz method for the bidomain reaction-diffusion system, SIAM J. Sci. Comput., 31, 3861-3883, (2009) · Zbl 1205.65261 · doi:10.1137/08074355X
[393] Murillo, M.; Cai, X., A fully implicit parallel algorithm for simulating the non-linear electrical activity of the heart, Numer. Linear Algebra Appl., 2/3, 261-277, (2004) · Zbl 1114.65112 · doi:10.1002/nla.381
[394] Muszkiewicz, A.; Britton, O.; Gemmell, P.; Passini, E.; Sánchez, C.; Zhou, X.; Carusi, A.; Quinn, T.; Burrage, K.; Bueno-Orovio, A.; Rodriguez, B., Variability in cardiac electrophysiology: using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm, Prog. Biophys. Molec. Biol., 120, 115-127, (2016) · doi:10.1016/j.pbiomolbio.2015.12.002
[395] Nagaiah, C.; Kunisch, K.; Plank, G., Numerical solution for optimal control of the reaction-diffusion equations in cardiac electrophysiology, Comput. Optim. Appl., 49, 149-178, (2011) · Zbl 1226.49024 · doi:10.1007/s10589-009-9280-3
[396] Nagaiah, C.; Kunisch, K.; Plank, G., On boundary stimulation and optimal boundary control of the bidomain equations, Math. Biosci., 245, 206-215, (2013) · Zbl 1308.92013 · doi:10.1016/j.mbs.2013.07.004
[397] Nagaiah, C.; Kunisch, K.; Plank, G., Optimal control approach to termination of re-entry waves in cardiac electrophysiology, J. Math. Biol., 67, 1-30, (2013) · Zbl 1319.92021 · doi:10.1007/s00285-012-0557-2
[398] Nagaiah, C.; Kunisch, K.; Plank, G., PDE constrained optimization of electrical defibrillation in a 3D ventricular slice geometry, Int. J. Numer. Methods Biomed. Engrg, 32, pp., (2016)
[399] Nagler, A.; Bertoglio, C.; Gee, M.; Wall, W.; Ourselin, S.; Rueckert, D.; Smith, N., Functional Imaging and Modeling of the Heart, Personalization of cardiac fiber orientations from image data using the unscented Kalman filter, 132-140, (2013), Springer · doi:10.1007/978-3-642-38899-6_16
[400] Nagler, A.; Bertoglio, C.; Stoeck, C.; Kozerke, S.; Wall, W.; van Assen, H., Functional Imaging and Modeling of the Heart: FIMH 2015, Cardiac fibers estimation from arbitrarily spaced diffusion weighted MRI, pp., (2015), Springer
[401] Nash, M.; Panfilov, A., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Prog. Biophys. Molec. Biol., 2/3, 501-522, (2004) · doi:10.1016/j.pbiomolbio.2004.01.016
[402] Negri, F., pp.
[403] Nestola, M.; Faggiano, E.; Vergara, C.; Lancellotti, R.; Ippolito, S.; Antona, C.; Quarteroni, A.; Scrofani, R., Computational comparison of aortic root stresses in presence of stentless and stented aortic valve bio-prostheses, Comput. Methods Biomech. Biomed. Engrg, 20, 171-181, (2017) · doi:10.1080/10255842.2016.1207171
[404] Newmark, N., A method of computation for structural dynamics, J. Engrg Mech., 85, 67-94, (1959)
[405] Nichols, N.; Lahoz, W.; Khattatov, B.; Menard, R., Data Assimilation: Making Sense of Observations, Mathematical concepts of data assimilation, 13-39, (2010), Springer · Zbl 1194.86002 · doi:10.1007/978-3-540-74703-1_2
[406] Nichols, W.; O’Rourke, M., McDonald’s Blood Flow in Arteries, pp., (2005), Hodder Arnold
[407] Niederer, S.; Smith, N., A mathematical model of the slow force response to stretch in rat ventricular myocytes, Biophys. J., 92, 4030-4044, (2007) · doi:10.1529/biophysj.106.095463
[408] Niederer, S.; Smith, N., An improved numerical method for strong coupling of excitation and contraction models in the heart, Prog. Biophys. Molec. Biol., 96, 90-111, (2008) · doi:10.1016/j.pbiomolbio.2007.08.001
[409] Niederer, S.; Hunter, P.; Smith, N., A quantitative analysis of cardiac myocyte relaxation: A simulation study, Biophysical Journal, 90, 1697-1722, (2006) · doi:10.1529/biophysj.105.069534
[410] Niederer, S.; Kerfoot, E.; Benson, A.; Bernabeu, M.; Bernus, O.; Bradley, C.; Cherry, E.; Clayton, R.; Fenton, F.; Garny, A., Verification of cardiac tissue electrophysiology simulators using an \(N\)-version benchmark, Phil. Trans. R. Soc. A, 369, 4331-4351, (2011) · doi:10.1098/rsta.2011.0139
[411] Nielsen, B.; Cai, X.; Lykaser, M., On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem, Math. Biosciences, 210, 523-553, (2007) · Zbl 1134.92021 · doi:10.1016/j.mbs.2007.06.003
[412] Nielsen, B.; Lykaser, M.; Tveito, A., On the use of the resting potential and level set methods for identifying ischemic heart disease: an inverse problem, J. Comput. Phys., 220, 772-790, (2007) · Zbl 1104.92035 · doi:10.1016/j.jcp.2006.05.040
[413] Nitsche, J., Uber ein variationsprinzip zur lösung von Dirichlet-problemen bei verwendung von teilräumen, die keinen randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36, 9-15, (197071) · Zbl 0229.65079 · doi:10.1007/BF02995904
[414] Nobile, F., pp.
[415] Nobile, F.; Vergara, C., An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. Comput., 30, 731-763, (2008) · Zbl 1168.74038 · doi:10.1137/060678439
[416] Nobile, F.; Vergara, C., Partitioned algorithms for fluid-structure interaction problems in haemodynamics, Milan J. Math., 80, 443-467, (2012) · Zbl 1344.76099 · doi:10.1007/s00032-012-0194-7
[417] Nobile, F.; Pozzoli, M.; Vergara, C., Time accurate partitioned algorithms for the solution of fluid-structure interaction problems in haemodynamics, Comput. Fluids, 86, 470-482, (2013) · Zbl 1290.76166 · doi:10.1016/j.compfluid.2013.07.031
[418] Nobile, F.; Pozzoli, M.; Vergara, C., Inexact accurate partitioned algorithms for fluid-structure interaction problems with finite elasticity in haemodynamics, J. Comput. Phys., 273, 598-617, (2014) · Zbl 1351.76324 · doi:10.1016/j.jcp.2014.05.020
[419] Nobile, F.; Tempone, R.; Webster, C., A sparse grid stochastic collocation method for partial differential equations with random input data, SIAM J. Numer. Anal., 46, 2309-2345, (2008) · Zbl 1176.65137 · doi:10.1137/060663660
[420] Nocedal, J., Acta Numerica, 1, Theory of algorithms for unconstrained optimization, 199-242, (1992), Cambridge University Press · Zbl 0766.65051
[421] Nordsletten, D.; Mccormick, M.; Kilner, P.; Hunter, P.; Kayand, D.; Smith, N., Fluid-solid coupling for the investigation of diastolic and systolic human left ventricular function, Int. J. Numer. Methods Biomed. Engrg, 27, 1017-1039, (2011) · Zbl 1219.92046 · doi:10.1002/cnm.1405
[422] Nordsletten, D.; Niederer, S.; Nash, M.; Hunter, P.; Smith, N., Coupling multi-physics models to cardiac mechanics, Prog. Biophys. Molec. Biol., 104, 77-88, (2011) · doi:10.1016/j.pbiomolbio.2009.11.001
[423] Oberai, A.; Gokhale, N.; Feijóo, G., Solution of inverse problems in elasticity imaging using the adjoint method, Inverse Problems, 19, 297-313, (2003) · Zbl 1171.35490 · doi:10.1088/0266-5611/19/2/304
[424] O’Donnell, T.; Jolly, M.; Gupta, A., A cooperative framework for segmentation using 2D active contours and 3D hybrid models as applied to branching cylindrical structures, Proc. IEEE Int. Conf. Computer Vision, 454-459, (1998) · doi:10.1109/ICCV.1998.710758
[425] Olufsen, M.; Peskin, C.; Kim, W.; Pedersen, E.; Nadim, A.; Larsen, J., Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions, Ann. Biomed. Engrg, 28, 1281-1299, (2000) · doi:10.1114/1.1326031
[426] Orszag, S.; Israeli, M.; Deville, M., Boundary conditions for incompressible flows, J. Sci. Comput., 1, 75-111, (1986) · Zbl 0648.76023 · doi:10.1007/BF01061454
[427] Osnes, H.; Sundnes, J., Uncertainty analysis of ventricular mechanics using the probabilistic collocation method, IEEE Trans. Biomed. Engrg, 59, 2171-2179, (2012) · doi:10.1109/TBME.2012.2198473
[428] Owida, A.; Do, H.; Morsi, Y., Numerical analysis of coronary artery bypass grafts: an over view, Comput. Methods Programs Biomed., 108, 689-705, (2012) · doi:10.1016/j.cmpb.2011.12.005
[429] Padala, M.; Sacks, M.; Liou, S.; Balachandran, K.; He, Z.; Yoganathan, A., Mechanics of the mitral valve strut chordae insertion region, J. Biomech. Engrg, 132, pp., (2010) · doi:10.1115/1.4001682
[430] Pagani, S., pp.
[431] Pagani, S.; Manzoni, A.; Quarteroni, A., pp.
[432] Palamara, S.; Vergara, C.; Catanzariti, D.; Faggiano, E.; Centonze, M.; Pangrazzi, C.; Maines, M.; Quarteroni, A., Computational generation of the purkinje network driven by clinical measurements: the case of pathological propagations, Int. J. Numer. Meth. Biomed. Engrg, 30, 1558-1577, (2014) · doi:10.1002/cnm.2689
[433] Palamara, S.; Vergara, C.; Faggiano, E.; Nobile, F., An effective algorithm for the generation of patient-specific purkinje networks in computational electrocardiology, J. Comput. Phys., 283, 495-517, (2015) · Zbl 1352.92090 · doi:10.1016/j.jcp.2014.11.043
[434] Panfilov, A., Three-dimensional organization of electrical turbulence in the heart, Phys. Rev. E, 59, R6251-R6254, (1999)
[435] Pant, S.; Fabrèges, B.; Gerbeau, J.-F.; Vignon-Clementel, I., A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis, Int. J. Numer. Meth. Biomed. Engrg, 30, 1614-1648, (2014) · doi:10.1002/cnm.2692
[436] Papadakis, G., Coupling 3D and 1D fluid-structure-interaction models for wave propagation in flexible vessels using a finite volume pressure-correction scheme, Comm. Numer. Methods Engrg, 25, 533-551, (2009) · Zbl 1162.76035 · doi:10.1002/cnm.1212
[437] Patankar, S.; Spalding, D., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, 15, 1787-1806, (1972) · Zbl 0246.76080 · doi:10.1016/0017-9310(72)90054-3
[438] Pathmanathan, P.; Chapman, S.; Gavaghan, D.; Whiteley, J., Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme, Quart. J. Mech. Appl. Math., 63, 375-399, (2010) · Zbl 1250.74019 · doi:10.1093/qjmam/hbq014
[439] Pathmanathan, P.; Mirams, G.; Southern, J.; Whiteley, J., The significant effect of the choice of ionic current integration method in cardiac electro-physiological simulations, Int. J. Numer. Methods Biomed. Engrg, 27, 1751-1770, (2011) · Zbl 1242.92017 · doi:10.1002/cnm.1438
[440] Pavarino, L.; Scacchi, S., Multilevel additive Schwarz preconditioners for the bidomain reaction-diffusion system, SIAM J. Sci. Comput, 31, 420-443, (2008) · Zbl 1185.65179 · doi:10.1137/070706148
[441] Pavarino, L.; Scacchi, S.; Zampini, S., Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics, Comput. Methods Appl. Mech. Engrg, 295, 562-580, (2015) · Zbl 1423.74913 · doi:10.1016/j.cma.2015.07.009
[442] Pedley, T., The Fluid Mechanics of Large Blood Vessels, pp., (1980), Cambridge University Press · Zbl 1152.76005 · doi:10.1017/CBO9780511896996
[443] Peiró, J.; Veneziani, A.; Quarteroni, A.; Formaggia, L.; Veneziani, A., Reduced models of the cardiovascular system, 347-394, (2009), Springer
[444] Peiró, J.; Formaggia, L.; Gazzola, M.; Radaelli, A.; Rigamonti, V., Shape reconstruction from medical images and quality mesh generation via implicit surfaces, Int. J. Numer. Methods Fluids, 53, 1339-1360, (2007) · Zbl 1106.92047 · doi:10.1002/fld.1362
[445] Pennacchio, M.; Simoncini, V., Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process, J. Comput. Appl. Math., 145, 49-70, (2002) · Zbl 1006.65102 · doi:10.1016/S0377-0427(01)00535-0
[446] Perdikaris, P.; Karniadakis, G., Model inversion via multi-fidelity Bayesian optimization: A new paradigm for parameter estimation in haemodynamics, and beyond, J. Royal Soc. Interface, 13, pp., (2015)
[447] Perego, M.; Veneziani, A.; Vergara, C., A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem, SIAM J. Sci. Comput., 33, 1181-1211, (2011) · Zbl 1227.92010 · doi:10.1137/100808277
[448] Perktold, K.; Hilbert, D., Numerical simulation of pulsatile flow in a carotid bifurcation model, J. Biomed. Engrg, 8, 193-199, (1986) · doi:10.1016/0141-5425(86)90083-X
[449] Perktold, K.; Thurner, E.; Kenner, T., Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models, Med. Biol. Engrg Comput., 32, 19-26, (1994) · doi:10.1007/BF02512474
[450] Perona, P.; Malik, J., Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intel., 12, 629-639, (1990) · doi:10.1109/34.56205
[451] Peskin, C., Flow patterns around heart valves: A numerical method, J. Comput. Phys., 10, 252-271, (1972) · Zbl 0244.92002 · doi:10.1016/0021-9991(72)90065-4
[452] Peskin, C., Fiber architecture of the left ventricular wall: an asymptotic analysis, Comm. Pure Appl. Math., 42, 1126-1131, (1989) · Zbl 0664.92005
[453] Peskin, C., Acta Numerica, 11, The immersed boundary method, 479-517, (2002), Cambridge University Press · Zbl 1123.74309
[454] Petitjean, C.; Dacher, J.-N., A review of segmentation methods in short axis cardiac MR images, Med. Image Anal., 15, 169-184, (2011) · doi:10.1016/j.media.2010.12.004
[455] Pezzuto, S., pp.
[456] Pham, D., Stochastic methods for sequential data assimilation in strongly nonlinear systems, Monthly Weather Rev., 129, 1194-1207, (2001) · doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2
[457] Pham, D.; Xu, C.; Prince, J., Current methods in medical image segmentation, Annu. Rev. Biomed. Engrg, 2, 315-337, (2000) · doi:10.1146/annurev.bioeng.2.1.315
[458] Piccinelli, M.; Vergara, C.; Antiga, L.; Forzenigo, L.; Biondetti, P.; Domanin, M., Impact of hemodynamics on lumen boundary displacements in abdominal aortic aneurysms by means of dynamic computed tomography and computational fluid dynamics, Biomech. Model. Mechanobiol, 12, 1263-1276, (2013) · doi:10.1007/s10237-013-0480-5
[459] Pierre, C., Preconditioning the bidomain model with almost linear complexity, J. Comput. Phys., 231, 82-97, (2012) · Zbl 1238.92023 · doi:10.1016/j.jcp.2011.08.025
[460] Piperno, S.; Farhat, C., Partitioned prodecures for the transient solution of coupled aeroelastic problems, II: energy transfer analysis and three-dimensional applications, Comput. Methods Appl. Mech. Engrg, 190, 3147-3170, (2001) · Zbl 1015.74009 · doi:10.1016/S0045-7825(00)00386-8
[461] Plank, G.; Liebmann, M.; dos Santos, R.; Vigmond, E.; Haase, G., Algebraic multigrid preconditioner for the cardiac bidomain model, IEEE Trans. Biomed. Engrg, 54, 585-596, (2007) · doi:10.1109/TBME.2006.889181
[462] Ponzini, R.; Vergara, C.; Redaelli, A.; Veneziani, A., Reliable CFD-based estimation of flow rate in haemodynamics measures, Ultrasound Med. Biol., 32, 1545-1555, (2006) · doi:10.1016/j.ultrasmedbio.2006.05.022
[463] Ponzini, R.; Vergara, C.; Rizzo, G.; Veneziani, A.; Roghi, A.; Vanzulli, A.; Parodi, O.; Redaelli, A., Womersley number-based estimates of blood flow rate in Doppler analysis: in vivo validation by means of phase contrast magnetic resonance imaging, IEEE Trans. Biomed. Engrg, 57, 1807-1815, (2010) · doi:10.1109/TBME.2010.2046484
[464] Porpora, A.; Zunino, P.; Vergara, C.; Piccinelli, M., Numerical treatment of boundary conditions to replace lateral branches in haemodynamics, Int. J. Numer. Methods Biomed. Engrg, 28, 1165-1183, (2012) · doi:10.1002/cnm.2488
[465] Potse, M.; Dubé, B.; Richer, J.; Vinet, A.; Gulrajani, R., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Engrg, 53, 2425-2435, (2006) · doi:10.1109/TBME.2006.880875
[466] Pravdin, S.; Berdyshev, V.; Panfilov, A.; Katsnelson, L.; Solovyova, O.; Markhasin, V., Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart, Biomed. Engrg OnLine, 12, pp., (1989) · doi:10.1186/1475-925X-12-54
[467] Prodi, G., Teoremi di tipo locale per il sistema di Navier-Stokes e stabilitá delle soluzioni stazionarie, Rendiconti del Seminario Matematico della Universitá di Padova, 32, 374-397, (1962) · Zbl 0108.28602
[468] Prot, V.; Skallerud, B.; Holzapfel, G., Transversely isotropic membrane shells with application to mitral valve mechanics. constitutive modelling and finite element implementation, Int. J. Numer. Methods Engrg, 71, 987-1008, (2007) · Zbl 1194.74203 · doi:10.1002/nme.1983
[469] Pullan, A.; Cheng, L.; Nash, M.; Bradley, C.; Paterson, D., Noninvasive electrical imaging of the heart: theory and model development, Ann. Biomed. Engrg, 29, 817-836, (2001) · doi:10.1114/1.1408921
[470] Pullan, A.; Cheng, L.; Nash, M.; Ghodrati, A.; Macleod, R.; Brooks, D.; Macfarlane, P., Comprehensive Electrocardiology, The inverse problem of electrocardiography, 299-344, (2010), Springer · doi:10.1007/978-1-84882-046-3_9
[471] Puwal, S.; Roth, B., Forward Euler stability of the bidomain model of cardiac tissue, IEEE Trans. Biomed. Engrg, 5, 951-953, (2007) · doi:10.1109/TBME.2006.889204
[472] Qu, Z.; Garfinkel, A., An advanced algorithm for solving partial differential equation in cardiac conduction, IEEE Trans. Biomed. Engrg, 46, 1166-1168, (1998)
[473] Quarteroni, A., Modeling the Heart and the Circulatory System, pp., (2015), Springer · Zbl 1307.92010 · doi:10.1007/978-3-319-05230-4
[474] Quarteroni, A.; Formaggia, L., Handbook of Numerical Analysis, Mathematical modelling and numerical simulation of the cardiovascular system, 3-127, (2004), Elsevier
[475] Quarteroni, A.; Rozza, G., Optimal control and shape optimization of aorto-coronaric bypass anastomoses, Math. Models Methods Appl. Sci., 13, 1801-1823, (2003) · Zbl 1063.49029 · doi:10.1142/S0218202503003124
[476] Quarteroni, A.; Rozza, G., Reduced Order Methods for Modeling and Computational Reduction, pp., (2014), Springer · Zbl 1280.65004 · doi:10.1007/978-3-319-02090-7
[477] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations, pp., (1994), Springer · Zbl 0852.76051
[478] Quarteroni, A.; Veneziani, A.; Bristeau, M.-O., Computational Science for the 21st Century, Modeling and simulation of blood flow problems, pp., (1997), Wiley
[479] Quarteroni, A.; Veneziani, A., Analysis of a geometrical multiscale model based on the coupling of ODE and PDE for blood flow simulations, Multiscale Model. Simul., 1, 173-195, (2003) · Zbl 1060.35003 · doi:10.1137/S1540345902408482
[480] Quarteroni, A.; Lassila, T.; Rossi, S.; Ruiz-Baier, R., Integrated heart-coupling multiscale and multiphysics models for the simulation of the cardiac function, Comput. Methods Appl. Mech. Engrg, 314, 345-407, (2017) · Zbl 1439.74208 · doi:10.1016/j.cma.2016.05.031
[481] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations. An Introduction, pp., (2016), Springer · Zbl 1337.65113
[482] Quarteroni, A.; Ragni, S.; Veneziani, A., Coupling between lumped and distributed models for blood flow problems, Comput. Vis. Sci., 4, 111-124, (2001) · Zbl 1097.76615 · doi:10.1007/s007910100063
[483] Quarteroni, A.; Sacco, R.; Saleri, F., Numerical Mathematics, pp., (2000), Springer · Zbl 0943.65001
[484] Quarteroni, A.; Saleri, F.; Veneziani, A., Analysis of the Yosida method for the incompressible Navier-Stokes equations, J. Math. Pures Appl., 78, 473-503, (1999) · Zbl 0930.35127 · doi:10.1016/S0021-7824(99)00027-6
[485] Quarteroni, A.; Saleri, F.; Veneziani, A., Factorization methods for the numerical approximation of Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg, 188, 505-526, (2000) · Zbl 0976.76044 · doi:10.1016/S0045-7825(99)00192-9
[486] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. Vis. Sci., 2, 163-197, (2000) · Zbl 1096.76042 · doi:10.1007/s007910050039
[487] Quarteroni, A.; Veneziani, A.; Vergara, C., Geometric multiscale modeling of the cardiovascular system, between theory and practice, Comput. Methods Appl. Mech. Engrg, 302, 193-252, (2016) · Zbl 1423.76528 · doi:10.1016/j.cma.2016.01.007
[488] Querzoli, G.; Fortini, S.; Cenedese, A., Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow, Phys. Fluids, 22, pp., (2010) · Zbl 1188.76125 · doi:10.1063/1.3371720
[489] Raghavan, M.; Vorp, D., Towards a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability, J. Biomech., 33, 475-482, (2000) · doi:10.1016/S0021-9290(99)00201-8
[490] Rannacher, R., On Chorin’s Projection Method for Incompressible Navier-Stokes Equations, 167-183, (1992), Springer · Zbl 0769.76053
[491] Raya, S.; Udupa, J., Shape-based interpolation of multidimensional objects, IEEE Trans. Med. Imaging, 9, 32-42, (1990) · doi:10.1109/42.52980
[492] Rayz, V.; Berger, S.; Saloner, D., Transitional flows in arterial fluid dynamics, Comput. Methods Appl. Mech. Engrg, 196, 3043-3048, (2007) · Zbl 1119.76075 · doi:10.1016/j.cma.2006.10.014
[493] Rees, T.; Dollar, H.; Wathen, A., Optimal solvers for PDE-constrained optimization, SIAM J. Sci. Comput., 32, 271-298, (2010) · Zbl 1208.49035 · doi:10.1137/080727154
[494] Relan, J.; Chinchapatnam, P.; Sermesant, M.; Rhode, K.; Ginks, M.; Delingette, H.; Rinaldi, C.; Razavi, R.; Ayache, N., Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia, Interface Focus, 1, 396-407, (2011) · doi:10.1098/rsfs.2010.0041
[495] Reymond, P.; Merenda, F.; Perren, F.; Rufenacht, D.; Stergiopulos, N., Validation of a one-dimensional model of the systemic arterial tree, Amer. J. Physiol.: Heart Circ. Physiol., 297, H208-H222, (2009)
[496] Robert, C.; Casella, G., Monte Carlo Statistical Methods, pp., (2004), Springer · Zbl 1096.62003 · doi:10.1007/978-1-4757-4145-2
[497] Robertson, A.; Sequeira, A.; Owens, R.; Formaggia, L.; Quarteroni, A.; Veneziani, A., Rheological models for blood, 211-241, (2009), Springer
[498] Robertson, D.; Yuan, J.; Wang, G.; Vannier, M., Total hip prosthesis metal-artifact suppression using iterative deblurring reconstruction, J. Comput. Assist. Tomogr., 21, 293-298, (1997) · doi:10.1097/00004728-199703000-00024
[499] Rogers, J.; Mcculloch, A., A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Trans. Biomed. Engrg, 41, 743-757, (1994) · doi:10.1109/10.310090
[500] Rossi, S., pp.
[501] Rossi, S.; Lassila, T.; Ruiz-Baier, R.; Sequeira, A.; Quarteroni, A., Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics, Europ. J. Mech. A: Solids, 48, 129-142, (2014) · Zbl 1406.74503 · doi:10.1016/j.euromechsol.2013.10.009
[502] Roth, B., Action potential propagation in a thick strand of cardiac muscle, Circ. Res., 68, 162-173, (1991) · doi:10.1161/01.RES.68.1.162
[503] Roth, B., Electrical conductivity values used with the bidomain model of cardiac tissue, IEEE Trans. Biomed. Engrg, 44, 326-328, (1997) · doi:10.1109/10.563303
[504] Rousseau, O., pp.
[505] Rudy, Y.; Messinger-Rapport, B., The inverse problem in electrocardiography: solutions in terms of epicardial potentials, Crit. Rev. Biomed. Engrg, 16, 215-268, (1988) · Zbl 0641.92002
[506] Rudy, Y.; Silva, J., Computational biology in the study of cardiac ion channels and cell electrophysiology, Quart. Rev. Biophys., 39, 57-116, (2006) · doi:10.1017/S0033583506004227
[507] Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Salsana, M.; Tarantola, S., Global Sensitivity Analysis: The Primer, pp., (2008), Wiley · Zbl 1161.00304
[508] Sankaran, S.; Marsden, A., The impact of uncertainty on shape optimization of idealized bypass graft models in unsteady flow, Phys. Fluids, 22, pp., (2010) · doi:10.1063/1.3529444
[509] Sankaran, S.; Marsden, A., A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations, J. Biomech. Engrg, 133, pp., (2011) · doi:10.1115/1.4003259
[510] Sankaran, S.; Grady, L.; Taylor, C., Impact of geometric uncertainty on hemodynamic simulations using machine learning, Comput. Methods Appl. Mech. Engrg, 297, 167-190, (2015) · Zbl 1423.76530 · doi:10.1016/j.cma.2015.08.014
[511] Sankaran, S.; Kim, H.; Choi, G.; Taylor, C., Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity, J. Biomech., 49, 2540-2547, (2016) · doi:10.1016/j.jbiomech.2016.01.002
[512] dos Santos, R.; Plank, G.; Bauer, S.; Vigmond, E.; Kornhuber, R., Domain Decomposition Methods in Science and Engineering, Preconditioning techniques for the bidomain equations, 571-580, (2005), Springer · Zbl 1059.92019 · doi:10.1007/3-540-26825-1_60
[513] Särkkä, S., Bayesian Filtering and Smoothing, pp., (2013), Cambridge University Press · Zbl 1274.62021 · doi:10.1017/CBO9781139344203
[514] Savader, S.; Lund, G.; Osterman, F., Volumetric evaluation of blood flow in normal renal arteries with a Doppler flow wire: A feasibility study, J. Vasc. Intervent. Radiol., 8, 209-214, (1997) · doi:10.1016/S1051-0443(97)70542-6
[515] Sazonov, I.; Yeo, S.; Bevan, R.; Xie, X.; van Loon, R.; Nithiarasu, P., Modelling pipeline for subject-specific arterial blood flow: A review, Int. J. Numer. Methods Biomed. Engrg, 27, 1868-1910, (2011) · Zbl 1241.92018 · doi:10.1002/cnm.1446
[516] Schiavazzi, D.; Arbia, G.; Baker, C.; Hlavacek, A.; Hsia, T.; Marsden, A.; Vignon-Clementel, I., Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation, Int. J. Numer. Methods Biomed. Engrg, 32, pp., (2016) · doi:10.1002/cnm.2737
[517] Schilling, R.; Peters, N.; Davies, D., Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter comparison of contact and reconstructed electrograms during sinus rhythm, Circulation, 98, 887-898, (1998) · doi:10.1161/01.CIR.98.9.887
[518] Sebastian, R.; Zimmerman, V.; Romero, D.; Frangi, A., Construction of a computational anatomical model of the perpheral cardiac conduction system, IEEE Trans. Biomed. Engrg, 58, 90-100, (2011) · doi:10.1109/TBME.2011.2166553
[519] Seo, J.; Vedula, V.; Abraham, T.; Lardo, A.; Dawoud, F.; Luo, H.; Mittal, R., Effect of the mitral valve on diastolic flow patterns, Phys. Fluids, 26, pp., (2014)
[520] Sermesant, M.; Chabiniok, R.; Chinchapatnam, P.; Mansi, T.; Billet, F.; Moireau, P.; Peyrat, J.; Wong, K.; Relan, J.; Rhode, K.; Ginks, M.; Lambiase, P.; Delingette, H.; Sorine, M.; Rinaldi, C.; Chapelle, D.; Razavi, R.; Ayache, N., Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: A preliminary clinical validation, Med. Image Anal., 16, 201-215, (2012) · doi:10.1016/j.media.2011.07.003
[521] Sermesant, M.; Moireau, P.; Camara, O.; Sainte-Marie, J.; Andriantsimiavona, R.; Cimrman, R.; Hill, D.; Chapelle, D.; Razavi, R., Cardiac function estimation from MRI using a heart model and data assimilation: advances and difficulties, Med. Image Anal., 10, 642-656, (2006) · Zbl 1070.92033 · doi:10.1016/j.media.2006.04.002
[522] Sethian, J., Level Set Methods and Fast Marching Methods, pp., (1999), Cambridge University Press · Zbl 0929.65066
[523] Sherwin, S.; Formaggia, L.; Peiró, J.; Franke, V., Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numer. Methods Fluids, 43, 673-700, (2003) · Zbl 1032.76729 · doi:10.1002/fld.543
[524] Sherwin, S.; Franke, V.; Peiró, J.; Parker, K., One-dimensional modelling of a vascular network in space-time variables, J. Engrg Math., 47, 217-259, (2003) · Zbl 1200.76230 · doi:10.1023/B:ENGI.0000007979.32871.e2
[525] Simon, D., Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches, pp., (2006), Wiley · doi:10.1002/0470045345
[526] Smith, N.; Nickerson, D.; Crampin, E.; Hunter, P., Acta Numerica, 13, Multiscale computational modelling of the heart, 371-431, (2004), Cambridge University Press · Zbl 1112.92021
[527] Spilker, R.; Taylor, C., Tuning multidomain hemodynamic simulations to match physiological measurements, Ann. Biomed. Engrg, 38, 2635-2648, (2010) · doi:10.1007/s10439-010-0011-9
[528] Stankovičová, T.; Bito, V.; Heinzel, F.; Mubagwa, K.; Sipido, K., Isolation and morphology of single purkinje cells from the porcine heart, Gen. Physiol. Biophys., 22, 329-340, (2003)
[529] Steele, B.; Wan, J.; Ku, J.; Hughes, T.; Taylor, C., In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts, IEEE Trans. Biomed. Engrg, 50, 649-656, (2003) · doi:10.1109/TBME.2003.812201
[530] Steinman, D.; Thomas, J.; Ladak, H.; Milner, J.; Rutt, B.; Spence, J., Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI, Magnet. Reson. Med., 47, 149-159, (2001) · doi:10.1002/mrm.10025
[531] Stergiopulos, N.; Westerhof, B.; Westerhof, N., Total arterial inertance as the fourth element of the windkessel model, Amer. J. Physiol.: Heart Circ. Physiol., 276, H81-H88, (1999)
[532] Stergiopulos, N.; Westerhof, B.; Meister, J.; Westerhof, N., Bridging Disciplines for Biomedicine: Proceedings of the 18th Annual International Conference of the IEEE, 4, The four-element windkessel model, 1715-1716, (1996)
[533] Stijnen, J.; de Hart, J.; Bovendeerd, P.; van de Vosse, F., Evaluation of a fictitious domain method for predicting dynamic response of mechanical heart valves, Int. J. Numer. Methods Fluids, 19, 835-850, (2004)
[534] Stroud, J.; Berger, S.; Saloner, D., Numerical analysis of flow through a severely stenotic carotid artery bifurcation, J. Biomech. Engrg, 124, 9-20, (2002) · doi:10.1115/1.1427042
[535] Stuart, A., Acta Numerica, 19, Inverse problems: A Bayesian perspective, 451-559, (2010), Cambridge University Press · Zbl 1242.65142
[536] Sullivan, T., Introduction to Uncertainty Quantification, pp., (2015), Springer · Zbl 1336.60002 · doi:10.1007/978-3-319-23395-6
[537] Sun, W.; Starly, B.; Nam, J.; Darling, A., Bio-CAD modeling and its applications in computer-aided tissue engineering, Comput. Aided Design, 11, 1097-1114, (2005) · doi:10.1016/j.cad.2005.02.002
[538] Sundaram, G.; Balakrishnan, K.; Kumar, R., Aortic valve dynamics using a fluid structure interaction model: the physiology of opening and closing, J. Biomech., 48, 1737-1744, (2015) · doi:10.1016/j.jbiomech.2015.05.012
[539] Sundnes, J.; Lines, G.; Tveito, A., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Math. Biosci., 2, 233-248, (2005) · Zbl 1063.92018 · doi:10.1016/j.mbs.2005.01.001
[540] Sundnes, J.; Wall, S.; Osnes, H.; Thorvaldsen, T.; Mcculloch, A., Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations, Comput. Methods Biomech. Biomed. Engrg, 6, 604-615, (2014) · doi:10.1080/10255842.2012.704368
[541] Swim, E.; Seshaiyer, P., A nonconforming finite element method for fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg, 195, 2088-2099, (2006) · Zbl 1119.74049 · doi:10.1016/j.cma.2005.01.017
[542] Tagliabue, A.; Dede’, L.; Quarteroni, A., pp.
[543] Talbot, H.; Cotin, S.; Razavi, R.; Rinaldi, C.; Delingette, H., Computer Assisted Radiology and Surgery: CARS 2015, Personalization of cardiac electrophysiology model using the unscented Kalman filtering, pp., (2015)
[544] Tarantola, A., Inverse Problem Theory and Methods for Model Parameter Estimation, pp., (2004), SIAM · Zbl 1074.65013
[545] Taylor, C.; Figueroa, C., Patient-specific modeling of cardiovascular mechanics, Annu. Rev. Biomed. Engrg, 11, 109-134, (2009) · doi:10.1146/annurev.bioeng.10.061807.160521
[546] Taylor, C.; Hughes, T.; Zarins, C., Finite element analysis of pulsatile flow in the abdominal aorta under resting and exercise conditions, Amer. Soc. Mech. Engineers, Bioengineering Division, 33, 81-82, (1996)
[547] Taylor, C.; Hughes, T.; Zarins, C., Finite element modeling of blood flow in arteries, Comput. Methods Appl. Mech. Engrg, 158, 155-196, (1998) · Zbl 0953.76058 · doi:10.1016/S0045-7825(98)80008-X
[548] Temam, R., Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionaires (I), Arch. Rat. Mech. Anal., 32, 135-153, (1969) · Zbl 0195.46001 · doi:10.1007/BF00247678
[549] Tezduyar, T.; Sathe, S.; Cragin, T.; Nanna, B.; Conklin, B.; Pausewang, J.; Schwaab, M., Modelling of fluid-structure interactions with the space-time finite elements: arterial fluid mechanics, Int. J. Numer. Methods Fluids, 54, 901-922, (2007) · Zbl 1276.76043 · doi:10.1002/fld.1443
[550] Thompson, J.; Soni, B.; Weatherill, N., Handbook of Grid Generation, pp., (1999), CRC Press · Zbl 0980.65500
[551] Timmermans, L.; Minev, P.; van de Vosse, F., An approximate projection scheme for incompressible flow using spectral elements, Int. J. Numer. Methods Fluids, 22, 673-688, (1996) · Zbl 0865.76070 · doi:10.1002/(SICI)1097-0363(19960415)22:7<673::AID-FLD373>3.0.CO;2-O
[552] Tomlinson, K.; Hunter, P.; Pullan, A., A finite element method for an eikonal equation model of myocardial excitation wavefront propagation, SIAM J. Appl. Math., 1, 324-350, (2002) · Zbl 1014.92010
[553] Toro, E., Brain venous haemodynamics, neurological diseases and mathematical modelling: A review, Appl. Math. Comput., 272, 542-579, (2016) · Zbl 1410.76487
[554] Trayanova, N., Defibrillation of the heart: insights into mechanisms from modelling studies, Exp. Physiol., 91, 323-337, (2006) · doi:10.1113/expphysiol.2005.030973
[555] Trayanova, N.; Li, W.; Eason, J.; Kohl, P., Effect of stretch-activated channels on defibrillation efficacy, Heart Rhythm, 1, 67-77, (2004) · doi:10.1016/j.hrthm.2004.01.002
[556] Trenhago, P.; Fernandes, L.; Müller, L.; Blanco, P.; Feijóo, R., An integrated mathematical model of the cardiovascular and respiratory systems, Int. J. Numer. Methods Biomed. Engrg, 32, pp., (2016) · doi:10.1002/cnm.2736
[557] Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods and Applications, pp., (2010), AMS · Zbl 1195.49001
[558] Tu, C.; Peskin, C., Stability and instability in the computation of flows with moving immersed boundaries: A comparison of three methods, SIAM J. Sci. Statist. Comput., 6, 1361-1376, (1992) · Zbl 0760.76067 · doi:10.1137/0913077
[559] Turek, S., Efficient Solvers for Incompressible Flow Problems, pp., (1999), Springer · Zbl 0930.76002 · doi:10.1007/978-3-642-58393-3
[560] ten Tusscher, K.; Panfilov, A., Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol., 51, 6141-6156, (2006) · doi:10.1088/0031-9155/51/23/014
[561] Unser, M., Splines: A perfect fit for signal and image processing, IEEE Trans. Signal Process. Mag., 16, 22-38, (1999) · doi:10.1109/79.799930
[562] Usyk, T.; Legrice, I.; Mcculloch, A., Computational model of three-dimensional cardiac electromechanics, Comput. Vis. Sci., 4, 249-257, (2002) · Zbl 1001.92005 · doi:10.1007/s00791-002-0081-9
[563] Veneziani, A.; Rannacher, R., Proceedings of ENUMATH, Boundary conditions for blood flow problems, pp., (1998), World Scientific
[564] Veneziani, A., pp.
[565] Veneziani, A., Block factorized preconditioners for high-order accurate in time approximation of the Navier-Stokes equations, Numer. Methods Partial Differ. Equations, 19, 487-510, (2003) · Zbl 1090.76050 · doi:10.1002/num.10060
[566] Veneziani, A.; Vergara, C., Flow rate defective boundary conditions in haemodynamics simulations, Int. J. Numer. Methods Fluids, 47, 803-816, (2005) · Zbl 1134.76748 · doi:10.1002/fld.843
[567] Veneziani, A.; Vergara, C., An approximate method for solving incompressible Navier-Stokes problems with flow rate conditions, Comput. Methods Appl. Mech. Engrg, 196, 1685-1700, (2007) · Zbl 1173.76355 · doi:10.1016/j.cma.2006.09.011
[568] Veneziani, A.; Vergara, C., Inverse problems in cardiovascular mathematics: toward patient-specific data assimilation and optimization, Int. J. Numer. Methods Biomed. Engrg, 29, 723-725, (2013) · doi:10.1002/cnm.2566
[569] Veneziani, A.; Villa, U., ALADINS: an algebraic splitting time adaptive solver for the incompressible Navier-Stokes equations, J. Comput. Phys., 238, 359-375, (2013) · Zbl 1286.35199 · doi:10.1016/j.jcp.2012.11.049
[570] Vergara, C., Nitsche’s method for defective boundary value problems in incompressibile fluid-dynamics, J. Sci. Comput., 46, 100-123, (2011) · Zbl 1237.65116 · doi:10.1007/s10915-010-9389-7
[571] Vergara, C.; Lange, M.; Palamara, S.; Lassila, T.; Frangi, A.; Quarteroni, A., A coupled 3D-1D numerical monodomain solver for cardiac electrical activation in the myocardium with detailed purkinje network, J. Comput. Phys., 308, 218-238, (2016) · Zbl 1352.92006 · doi:10.1016/j.jcp.2015.12.016
[572] Vergara, C.; Palamara, S.; Catanzariti, D.; Nobile, F.; Faggiano, E.; Pangrazzi, C.; Centonze, M.; Maines, M.; Quarteroni, A.; Vergara, G., Patient-specific generation of the purkinje network driven by clinical measurements of a normal propagation, Med. Biol. Engrg Comput., 52, 813-826, (2014) · doi:10.1007/s11517-014-1183-5
[573] Vergara, C.; Ponzini, R.; Veneziani, A.; Redaelli, A.; Neglia, D.; Parodi, O., Womersley number-based estimation of flow rate with Doppler ultrasound: sensitivity analysis and first clinical application, Comput. Methods Programs Biomed., 98, 151-160, (2010) · doi:10.1016/j.cmpb.2009.09.013
[574] Vergara, C.; Viscardi, F.; Antiga, L.; Luciani, G., Influence of bicuspid valve geometry on ascending aortic fluid-dynamics: A parametric study, Artificial Organs, 36, 368-378, (2012) · doi:10.1111/j.1525-1594.2011.01356.x
[575] Vierendeels, J. A.; Riemslagh, K.; Dick, E.; Verdonck, P., Computer simulation of intraventricular flow and pressure gradients during diastole, J. Biomech. Engrg, 6, 667-674, (2000) · doi:10.1115/1.1318941
[576] Vigmond, E.; Aguel, F.; Trayanova, N., Computational techniques for solving the bidomain equations in three dimensions, IEEE Trans. Biomed. Engrg, 49, 1260-1269, (2002) · doi:10.1109/TBME.2002.804597
[577] Vigmond, E.; Clements, C., Construction of a computer model to investigate sawtooth effects in the purkinje system, IEEE Trans. Biomed. Engrg, 54, 389-399, (2007) · doi:10.1109/TBME.2006.888817
[578] Vigmond, E.; dos Santos, R.; Prassl, A.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Prog. Biophys. Molec. Biol., 96, 3-18, (2008) · doi:10.1016/j.pbiomolbio.2007.07.012
[579] Vignon-Clementel, I.; Figueroa, C.; Jansen, K.; Taylor, C., Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure waves in arteries, Comput. Methods Appl. Mech. Engrg, 195, 3776-3996, (2006) · Zbl 1175.76098 · doi:10.1016/j.cma.2005.04.014
[580] Virag, N.; Jacquemet, V.; Henriquez, C.; Zozor, S.; Blanc, O.; Vesin, J.-M.; Pruvot, E.; Kappenberger, L., Study of atrial arrhythmias in a computer model based on magnetic resonance images of human atria, Chaos, 12, 754-763, (2002) · doi:10.1063/1.1483935
[581] Viscardi, F.; Vergara, C.; Antiga, L.; Merelli, S.; Veneziani, A.; Puppini, G.; Faggian, G.; Mazzucco, A.; Luciani, G., Comparative finite element model analysis of ascending aortic flow in bicuspid and tricuspid aortic valve, Artificial Organs, 34, 1114-1120, (2010) · doi:10.1111/j.1525-1594.2009.00989.x
[582] Voss, H. U.; Timmer, J.; Kurths, J., Nonlinear dynamical system identification from uncertain and indirect measurements, Int. J. Bifurc. Chaos, 14, 1905-1933, (2004) · Zbl 1129.93545 · doi:10.1142/S0218127404010345
[583] Voss, J., An Introduction to Statistical Computing: A Simulation-Based Approach, pp., (2013), Wiley · Zbl 1275.65001 · doi:10.1002/9781118728048
[584] Vossoughi, J.; Vaishnav, R.; Patel, D.; Mow, V. C., Advances in Bioengineering 1980: Papers Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Compressibility of the myocardial tissue, 45-48, (1980), ASME
[585] Votta, E.; Le, T.; Stevanella, M.; Fusinic, L.; Caiani, E.; Redaelli, A.; Sotiropoulos, F., Toward patient-specific simulations of cardiac valves: state-of-the-art and future directions, J. Biomech., 46, 217-228, (2013) · doi:10.1016/j.jbiomech.2012.10.026
[586] Votta, E.; Maisano, F.; Bolling, S.; Alfieri, O.; Montevecchi, F.; Redaelli, A., The geoform disease-specific annuloplasty system: A finite element study, Ann. Thorac. Surg., 84, 92-101, (2007) · doi:10.1016/j.athoracsur.2007.03.040
[587] Waiter, G.; Mckiddie, F.; Redpath, T.; Semple, S.; Trent, R., Determination of normal regional left ventricular function from cine-MR images using a semi-automated edge detection method, Magnet. Reson. Imaging, 17, 99-107, (1999) · doi:10.1016/S0730-725X(98)00158-1
[588] Wall, W.; Wiechert, L.; Comerford, A.; Rausch, S., Towards a comprehensive computational model for the respiratory system, Int. J. Numer. Methods Biomed. Engrg, 26, 807-827, (2010) · Zbl 1193.92068
[589] Wallman, M.; Smith, N.; Rodriguez, B., Computational methods to reduce uncertainty in the estimation of cardiac conduction properties from electroanatomical recordings, Med. Image Anal., 18, 228-240, (2014) · doi:10.1016/j.media.2013.10.006
[590] Wang, D.; Kirby, R.; Macleod, R.; Johnson, C., Inverse electrocardiographic source localization of ischemia: an optimization framework and finite element solution, J. Comput. Phys., 250, 403-424, (2013) · doi:10.1016/j.jcp.2013.05.027
[591] Wang, K.; Dutton, R.; Taylor, C., Improving geometric model construction for blood flow modeling, IEEE Engrg Med. Biol. Mag., 18, 33-39, (1999) · doi:10.1109/51.805142
[592] Wang, L.; Wong, K. L.; Zhang, H.; Liu, H.; Shi, P., Noninvasive computational imaging of cardiac electrophysiology for 3-D infarct, IEEE Trans. Biomed. Engrg, 58, 1033-1043, (2011) · doi:10.1109/TBME.2010.2099226
[593] Wang, L.; Zhang, H.; Wong, K.; Shi, P., 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, A reduced-rank square root filtering framework for noninvasive functional imaging of volumetric cardiac electrical activity, 533-536, (2009) · doi:10.1109/ICASSP.2009.4959638
[594] Watanabe, H.; Hisada, T.; Sugiura, S.; Okada, J.; Fukunari, H., Computer simulation of blood flow, left ventricular wall motion and their interrelationship by fluid-structure interaction finite element method, JSME Int. J. C: Mechanical Systems, Machine Elements and Manufacturing, 45, 1003-1012, (2002) · doi:10.1299/jsmec.45.1003
[595] Watson, D., Computing the \(n\)-dimensional Delaunay tessellation with application to Voronoi polytopes, Comput. J., 24, 167-172, (1981) · doi:10.1093/comjnl/24.2.167
[596] Weatherill, N.; Hassan, O., Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints, Int. J. Numer. Methods Engrg, 37, 2005-2039, (1994) · Zbl 0806.76073 · doi:10.1002/nme.1620371203
[597] Weinberg, E.; Kaazempur-Mofrad, M., A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics, J. Biomech., 39, 1557-1561, (2006) · doi:10.1016/j.jbiomech.2005.04.020
[598] Wenk, J.; Ge, L.; Zhang, Z.; Soleimani, M.; Potter, D.; Wallace, A.; Tseng, E.; Ratcliffe, M.; Guccione, J., Mechanics of the mitral valve strut chordae insertion region, Comput. Methods Biomech. Biomed. Engrg, 16, 807-818, (2013) · doi:10.1080/10255842.2011.641121
[599] Westerhof, N.; Lankhaar, J.; Westerhof, B., The arterial windkessel, Med. Biol. Engrg Comput., 47, 131-141, (2009) · doi:10.1007/s11517-008-0359-2
[600] Wong, J.; Kuhl, E., Generating fibre orientation maps in human heart models using Poisson interpolation, Comput. Methods Biomech. Biomed. Engrg, 17, 1217-1226, (2014) · doi:10.1080/10255842.2012.739167
[601] Wong, J.; Goktepe, S.; Kuhl, E., Computational modeling of chemo-electro-mechanical coupling: A novel implicit monolithic finite element approach, Int. J. Numer. Methods Biomed. Engrg, 29, 1104-1133, (2013) · doi:10.1002/cnm.2565
[602] Xi, J.; Lamata, P.; Lee, J.; Moireau, P.; Chapelle, D.; Smith, N., Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter, J. Mech. Behav. Biomed. Materials, 4, 1090-1102, (2011) · doi:10.1016/j.jmbbm.2011.03.018
[603] Xie, F.; Qu, Z.; Yang, J.; Baher, A.; Weiss, J.; Garfinkel, A., A simulation study of the effects of cardiac anatomy in ventricular fibrillation, J. Clin. Invest., 113, 686-693, (2004)
[604] Xiong, F.; Chong, C., A parametric numerical investigation on haemodynamics in distal coronary anastomoses, Med. Engrg Phys., 30, 311-320, (2008) · doi:10.1016/j.medengphy.2007.04.013
[605] Xiu, D.; Hesthaven, J., High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput., 27, 1118-1139, (2005) · Zbl 1091.65006 · doi:10.1137/040615201
[606] Xiu, D.; Karniadakis, G., Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Comput. Methods Appl. Mech. Engrg, 191, 4927-4948, (2002) · Zbl 1016.65001 · doi:10.1016/S0045-7825(02)00421-8
[607] Xiu, D.; Karniadakis, G., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 619-644, (2002) · Zbl 1014.65004 · doi:10.1137/S1064827501387826
[608] Xiu, D.; Sherwin, S., Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network, J. Comput. Phys., 226, 1385-1407, (2007) · Zbl 1121.92023 · doi:10.1016/j.jcp.2007.05.020
[609] Yamashita, Y., Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution, IEEE Trans. Biomed. Engrg, BME‐29, 719-725, (1982) · doi:10.1109/TBME.1982.325002
[610] Yanagihara, K.; Noma, A.; Irisawa, H., Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments, Japan. J. Physiol, 30, 841-857, (1980) · doi:10.2170/jjphysiol.30.841
[611] Yang, H.; Veneziani, A., Estimation of cardiac conductivities in ventricular tissue by a variational approach, Inverse Problems, 31, pp., (2015) · Zbl 1328.65201 · doi:10.1088/0266-5611/31/11/115001
[612] Yim, P.; Cebral, J.; Mullick, R.; Marcos, H.; Choyke, P., Vessel surface reconstruction with a tubular deformable model, IEEE Trans. Med. Imaging, 20, 1411-1421, (2001) · doi:10.1109/42.974935
[613] Yin, M.; Luo, X.; Wang, T.; Watton, P., Effects of flow vortex on a chorded mitral valve in the left ventricle, Int. J. Numer. Methods Biomed. Engrg, 26, 381-404, (2009) · Zbl 1183.92024 · doi:10.1002/cnm.1298
[614] Younis, H.; Kaazempur-Mofrad, M.; Chan, R.; Isasi, A.; Hinton, D.; Chau, A.; Kim, L.; Kamm, R., Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation, Biomech. Model. Mechanobiol., 3, 17-32, (2004) · doi:10.1007/s10237-004-0046-7
[615] Yu, Y.; Baek, H.; Karniadakis, G., Generalized fictitious methods for fluid-structure interactions: analysis and simulations, J. Comput. Phys., 245, 317-346, (2013) · Zbl 1349.76577 · doi:10.1016/j.jcp.2013.03.025
[616] Zhao, S.; Xu, X.; Hughes, A.; Thom, S.; Stanton, A.; Ariff, B.; Long, Q., Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation, J. Biomech., 33, 975-984, (2000) · doi:10.1016/S0021-9290(00)00043-9
[617] Zhu, F.; Tian, J., Modified fast marching and level set method for medical image segmentation, J. X-Ray Sci. Technol., 11, 193-204, (2003)
[618] Zienkiewicz, O.; Taylor, R., The Finite Element Method for Solid and Structural Mechanics, pp., (2005), Butterworth-Heinemann · Zbl 1084.74001
[619] Zonca, S.; Formaggia, L.; Vergara, C., pp.
[620] Zunino, P., Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty techniques, Comput. Methods Appl. Mech. Engrg, 198, 3026-3038, (2009) · Zbl 1229.76061 · doi:10.1016/j.cma.2009.05.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.