×

Shape reconstruction of cardiac ischemia from non-contact intracardiac recordings: a model study. (English) Zbl 1255.92013

Summary: We present a new approach for the reconstruction of ischemic regions from only a few non-contact intracardiac recordings. Hence, it is desirable to exploit the spatio-temporal correlations contained in the data. To this end, we incorporate a time-dependent monodomain model of the cardiac electric activity into the inversion scheme. In order to take into account the electrophysiological alterations of ischemic regions, we also introduce appropriate variations of the model parameters. This approach allows us to perform the reconstruction of the affected regions successfully using only a few recording sites. The reconstruction process is based on level set techniques. Our numerical experiments in a bi-dimensional model of cardiac tissue validate our approach.

MSC:

92C50 Medical applications (general)
92C05 Biophysics
Full Text: DOI

References:

[1] Pullan, A. J.; Cheng, L. K.; Buist, M., Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again (2005), World Scientific Publishing · Zbl 1120.92015
[2] Sachse, F. B., Computational Cardiology: Modeling of Anatomy, Electrophysiology, and Mechanics (2004), Springer-Verlag, New York Inc. · Zbl 1051.92025
[3] Clayton, R.; Bernus, O.; Cherry, E.; Dierckx, H.; Fenton, F.; Mirabella, L., Models of cardiac tissue electrophysiology: progress, challenges and open questions, Prog. Biophys. Mol. Biol., 104, 22-48 (2011)
[4] Rudy, Y.; Messinger-Rapport, B. J., The inverse problem in electrocardiography: solutions in terms of epicardial potentials, Crit. Rev. Biomed. Eng., 16, 3, 215-268 (1988)
[5] MacLeod, R. S.; Brooks, D. H., Recent progress in inverse problems in electrocardiology, IEEE Eng. Med. Biol. Mag., 17, 1, 73-83 (1998)
[6] Schilling, R. J.; Peters, N. S.; Davies, D. W., Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm, Circulation, 98, 9, 887-898 (1998)
[7] Voth, E. J., The inverse problem of electrocardiography: industrial solutions and simulations, Int. J. Bioelectromagnetism, 7, 2, 191-194 (2005)
[8] Gulrajani, R. M., The forward and inverse problems of electrocardiography, IEEE Eng. Med. Biol. Mag., 17, 5, 84-101 (1998)
[9] Messinger-Rapport, B. J.; Rudy, Y., Computational issues of importance to the inverse recovery of epicardial potentials in a realistic heart-torso geometry, Math. Biosci., 97, 1, 85-120 (1989) · Zbl 0679.92004
[10] Rudy, Y.; Oster, H. S., The electrocardiographic inverse problem, Crit. Rev. Biomed. Eng., 20, 1-2, 25-45 (1992)
[11] Oster, H. S.; Rudy, Y., The use of temporal information in the regularization of the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng., 39, 1, 65-75 (1992)
[12] Greensite, F.; Huiskamp, G., An improved method for estimating epicardial potentials from the body surface, IEEE Trans. Biomed. Eng., 45, 1, 98-104 (1998)
[13] Brooks, D. H.; Ahmad, G. F.; MacLeod, R. S.; Maratos, G. M., Inverse electrocardiography by simultaneous imposition of multiple constraints, IEEE Trans. Biomed. Eng., 46, 1, 3-18 (1999)
[14] Berrier, K.; Sorensen, D.; Khoury, D., Solving the inverse problem of electrocardiography using a duncan and horn formulation of the kalman filter, IEEE Trans. Biomed. Eng., 51, 3, 507-515 (2004)
[15] Huiskamp, G.; Greensite, F., A new method for myocardial activation imaging, IEEE Trans. Biomed. Eng., 44, 6, 433-446 (1997)
[16] Huiskamp, G.; Van Oosterom, A., The depolarization sequence of the human heart surface computed from measured body surface potentials, IEEE Trans. Biomed. Eng., 35, 12, 1047-1058 (1988)
[17] Tilg, B.; Fischer, G.; Modre, R.; Hanser, F.; Messnarz, B.; Schocke, M., Model-based imaging of cardiac electrical excitation in humans, IEEE Trans. Med. Imaging, 21, 9, 1031-1039 (2002)
[18] Messnarz, B.; Tilg, B.; Modre, R.; Fischer, G.; Hanser, F., A new spatiotemporal regularization approach for reconstruction of cardiac transmembrane potential patterns, IEEE Trans. Biomed. Eng., 51, 2, 273-281 (2004)
[19] Ghodrati, A.; Brooks, D. H.; Tadmor, G.; MacLeod, R. S., Wavefront-based models for inverse electrocardiography, IEEE Trans. Biomed. Eng., 53, 9, 1821-1831 (2006)
[20] Serinagaolu, Y.; Brooks, D. H.; MacLeod, R. S., Improved performance of bayesian solutions for inverse electrocardiography using multiple information sources, IEEE Trans. Biomed. Eng., 7, 10, 2024-2034 (2006)
[21] Yilmaz, B.; MacLeod, R. S.; Punske, B. B.; Taccardi, B.; Brooks, D. H., Venous catheter based mapping of ectopic epicardial activation: training data set selection for statistical estimation, IEEE Trans. Biomed. Eng., 52, 11, 1823-1831 (2005)
[22] Ghosh, S.; Rudy, Y., Application of l1-norm regularization to epicardial potential solution of the inverse electrocardiography problem, Ann. Biomed. Eng., 37, 5, 902-912 (2009)
[23] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on Hamilton Jacobi formulations, J. Comput. Phys., 79, 12-49 (1988) · Zbl 0659.65132
[24] Santosa, F., A level set approach for inverse problems involving obstacles, ESAIM Control Optim. Calc. Var., 1, 17-33 (1996) · Zbl 0870.49016
[25] Dorn, O.; Miller, E.; Rappaport, C., A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets, Inverse Problems, 16, 1119-1156 (2000) · Zbl 0983.35150
[26] Álvarez, D.; Medina, P.; Moscoso, M., Fluorescence lifetime imaging from time resolver measurements using a shape-based approach, Opt. Express, 17, 11, 8843-8855 (2009)
[27] Irishina, N.; Dorn, O.; Moscoso, M., Microwave imaging for early breast cancer detection using a shape-based strategy, IEEE Trans. Biomed. Eng., 56, 4, 1143-1153 (2009)
[28] Dorn, O.; Lesselier, D., Level set methods for inverse scattering, Inverse Problems, 22, R67-R131 (2006) · Zbl 1191.35272
[29] Nielsen, B. F.; Lysaker, M.; Tveito, A., On the use of the resting potential and level set methods for identifying ischemic heart disease: an inverse problem, J. Comput. Phys., 220, 771-790 (2007) · Zbl 1104.92035
[30] Mitchell, C. C.; Schaeffer, D. G., A two-current model for the dynamics of cardiac membrane, Bull. Math. Biol., 65, 5, 767-793 (2003) · Zbl 1334.92097
[31] Cain, J. W.; Schaeffer, D. G., Shortening of cardiac action potential duration near an insulating boundary, Math. Med. Biol., 25, 1, 21-36 (2008) · Zbl 1146.92311
[32] Schaeffer, D.; Ying, W.; Zhao, X., Asymptotic approximation of an ionic model for cardiac restitution, Nonlinear Dynam., 51, 1-2, 189-198 (2008) · Zbl 1169.92014
[33] Beck, M.; Jones, C. K.R. T.; Schaeffer, D.; Wechselberger, M., Electrical waves in a one-dimensional model of cardiac tissue, SIAM J. Appl. Dyn. Syst., 7, 4, 1558-1581 (2008) · Zbl 1167.34364
[34] Henriquez, C. S.; Papazoglou, A. A., Using computers models to understand the roles of tissue structure and membrane dynamics in arrhythmogenesis, Proc. IEEE, 84, 334-354 (1996)
[35] Morena, H.; Janse, M. J.; Fiolet, J. W.; Krieger, W. J.; Crijns, H.; Durrer, D., Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart, Circ. Res., 46, 5, 634-646 (1980)
[36] Kodama, I.; Wilde, A.; Janse, M. J.; Durrer, D.; Yamada, K., Combined effects of hypoxia, hyperkalemia and acidosis on membrane action potential and excitability of guinea-pig ventricular muscle, J. Mol. Cell. Cardiol., 16, 3, 247-259 (1984)
[37] Shaw, R. M.; Rudy, Y., Electrophysiologic effects of acute myocardial ischemia. a mechanistic investigation of action potential conduction and conduction failure, Circ. Res., 80, 1, 124-138 (1997)
[38] Cimponeriu, A.; Starmer, C. F.; Bezerianos, A., A theoretical analysis of acute ischemia and infarction using ecg reconstruction on a 2-d model of myocardium, IEEE Trans. Biomed. Eng., 48, 1, 41-54 (2001)
[39] Ferrero, J.; Trénor, B.; Rodríguez, B.; Saiz, J., Electrical activity and reentry during acute regional myocardial ischemia: insights from simulations, Int. J. Bifurcation Chaos, 13, 12, 3703-3715 (2003) · Zbl 1058.92024
[40] Trenor, B.; Romero, L.; Ferrero, J. M.J.; Saiz, J.; Molto, G.; Alonso, J. M., Vulnerability to reentry in a regionally ischemic tissue: a simulation study, Ann. Biomed. Eng., 35, 10, 1756-1770 (2007)
[41] Malmivuo, J.; Plonsey, R., Bioelectromagnetism—Principles and Applications of Bioelectric and Biomagnetic Fields (1995), Oxford University Press: Oxford University Press New York
[42] Gima, K.; Rudy, Y., Ionic current basis of electrocardiographic waveforms: a model study, Circ. Res., 90, 889-896 (2002)
[43] Álvarez, D.; Dorn, O.; Irishina, N.; Moscoso, M., Crack reconstruction using a level-set strategy, J. Comput. Phys., 228, 5710-5721 (2009) · Zbl 1173.78309
[44] Li, G.; He, B., Non-invasive estimation of myocardial infarction by means of a heart-model-based imaging approach: a simulation study, Med. Biol. Eng. Comput., 42, 1, 128-136 (2004)
[45] Farina, D.; Dossel, O., Model-based approach to the localization of infarction, Comput. Cardiol., 2007, 173-176 (2007)
[46] MacLachlan, M. C.; Nielsen, B. F.; Lysaker, M.; Tveito, A., Computing the size and location of myocardial ischemia using measurements of st-segment shift, IEEE Trans. Biomed. Eng., 53, 6, 1024-1031 (2006)
[47] Ruud, T. S.; Nielsen, B. F.; Lysaker, M.; Sundnes, J., A computationally efficient method for determining the size and location of myocardial ischemia, IEEE Trans. Biomed. Eng., 56, 2, 263-272 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.