×

Block decomposition of the category of smooth \(\ell\)-modular representations of finite length of \(\mathrm{GL}_m(D)\). (Décomposition en blocs de la catégorie des représentations \(\ell\)-modulaires lisses de longueur finie de \(\mathrm{GL}_m(D)\).) (French. English summary) Zbl 1535.22055

Summary: Let \(\mathbb{F}\) be a non-Archimedean locally compact field of residue characteristic \(p\), let \(G\) be an inner form of \(\mathrm{GL}_n(\mathbb{F})\) with \(n\geq 1\) and \(\ell\) be a prime number different from \(p\). We describe the block decomposition of the category of smooth representations of finite length of \(G\) with coefficients in \(\bar{\mathbb{F}}_{\ell}\). Unlike the case of complex representations of an arbitrary \(p\)-adic reductive group and that of \(\ell\)-modular representations of \(\mathrm{GL}_n(\mathbb{F})\), several non-isomorphic supercuspidal supports may correspond to the same block. We describe the (finitely many) supercuspidal supports corresponding to a given block. We also prove that a supercuspidal block is equivalent to the principal (that is, the one which contains the trivial character) block of the multiplicative group of a suitable division algebra, and we determine those irreducible representations having a nontrivial extension with a given supercuspidal representation of \(G\).

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Bernstein, J. N., Representations of reductive groups over a local field, Le “centre” de Bernstein, 1-32 (1984), Hermann, Paris · Zbl 0599.22016
[2] Broussous, Paul, Hereditary orders and embeddings of local fields in simple algebras, J. Algebra, 204, 1, 324-336 (1998) · Zbl 0911.16011 · doi:10.1006/jabr.1997.7345
[3] Bushnell, Colin J.; Kutzko, Philip C., The admissible dual of \(\text{GL}(N)\) via compact open subgroups, 129, xii+313 p. pp. (1993), Princeton University Press: Princeton University Press, Princeton, NJ · Zbl 0787.22016 · doi:10.1515/9781400882496
[4] Casselman, W., Introduction to the theory of admissible representations of \(p\)-adic reductive group (1995)
[5] Chinello, Gianmarco, Hecke algebra with respect to the pro-\(p\)-radical of a maximal compact open subgroup for \(GL(n,F)\) and its inner forms, J. Algebra, 478, 296-317 (2017) · Zbl 1423.20056 · doi:10.1016/j.jalgebra.2017.01.022
[6] Chinello, Gianmarco, Blocks of the category of smooth \(\ell \)-modular representations of \(\text{GL}(n,F)\) and its inner forms : reduction to level 0, Algebra Number Theory, 12, 7, 1675-1713 (2018) · Zbl 1477.20020 · doi:10.2140/ant.2018.12.1675
[7] Dat, Jean-François, \(v\)-tempered representations of \(p\)-adic groups. I. \(l\)-adic case, Duke Math. J., 126, 3, 397-469 (2005) · Zbl 1063.22017 · doi:10.1215/S0012-7094-04-12631-4
[8] Dat, Jean-François, Théorie de Lubin-Tate non abélienne \(\ell \)-entière, Duke Math. J., 161, 6, 951-1010 (2012) · Zbl 1260.11070 · doi:10.1215/00127094-1548425
[9] Dat, Jean-François, Around Langlands correspondences, 691, A functoriality principle for blocks of \(p\)-adic linear groups, 103-131 (2017), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1388.22013 · doi:10.1090/conm/691/13895
[10] Dat, Jean-François, Equivalences of tame blocks for \(p\)-adic linear groups, Math. Ann., 371, 1-2, 565-613 (2018) · Zbl 1403.11074 · doi:10.1007/s00208-018-1648-1
[11] Dat, Jean-François, Simple subquotients of big parabolically induced representations of \(p\)-adic groups, J. Algebra, 510, 499-507 (2018) · Zbl 1402.22018 · doi:10.1016/j.jalgebra.2018.05.022
[12] Dudas, Olivier, Appendix : non-uniqueness of supercuspidal support for finite reductive groups, J. Algebra, 510, 508-512 (2018) · Zbl 1402.20020 · doi:10.1016/j.jalgebra.2018.05.021
[13] Emerton, Matthew; Helm, David, The local Langlands correspondence for \(\text{GL}_n\) in families, Ann. Sci. Éc. Norm. Supér. (4), 47, 4, 655-722 (2014) · Zbl 1321.11055 · doi:10.24033/asens.2224
[14] Grabitz, Martin, Simple characters for principal orders in \(\text{M}_m(D)\), J. Number Theory, 126, 1, 1-51 (2007) · Zbl 1146.22015 · doi:10.1016/j.jnt.2006.06.008
[15] Grabitz, Martin; Silberger, Allan J.; Zink, Ernst-Wilhelm, Level zero types and Hecke algebras for local central simple algebras, J. Number Theory, 91, 1, 92-125 (2001) · Zbl 1009.22016 · doi:10.1006/jnth.2001.2684
[16] Helm, David, The Bernstein center of the category of smooth \(W(k)[\text{GL}_n(F)]\)-modules, Forum Math. Sigma, 4, 98 p. pp. (2016) · Zbl 1364.11097 · doi:10.1017/fms.2016.10
[17] Mínguez, Alberto; Sécherre, Vincent, Représentations lisses modulo \(\ell\) de \(\text{GL}_m({D})\), Duke Math. J., 163, 4, 795-887 (2014) · Zbl 1293.22005 · doi:10.1215/00127094-2430025
[18] Mínguez, Alberto; Sécherre, Vincent, Types modulo \(\ell\) pour les formes intérieures de \(\text{GL}_n\) sur un corps local non archimédien, Proc. Lond. Math. Soc. (3), 109, 4, 823-891 (2014) · Zbl 1302.22013 · doi:10.1112/plms/pdu020
[19] Mínguez, Alberto; Sécherre, Vincent, Trends in number theory, 649, Classification des représentations modulaires de \(\text{GL}_n(q)\) en caractéristique non naturelle, 163-183 (2015), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1346.20064 · doi:10.1090/conm/649/13025
[20] Mínguez, Alberto; Sécherre, Vincent, Correspondance de Jacquet-Langlands locale et congruences modulo \(\ell \), Invent. Math., 208, 2, 553-631 (2017) · Zbl 1412.22035 · doi:10.1007/s00222-016-0696-y
[21] Pareigis, Bodo, Categories and functors, 39, viii+268 p. pp. (1970), Academic Press: Academic Press, New York-London · Zbl 0211.32402
[22] Sécherre, Vincent, Représentations lisses de \(\text{GL}(m,D)\). I. Caractères simples, Bull. Soc. Math. France, 132, 3, 327-396 (2004) · Zbl 1079.22016 · doi:10.24033/bsmf.2468
[23] Sécherre, Vincent, Représentations lisses de \(\text{GL}(m,D)\). II. \( \beta \)-extensions, Compos. Math., 141, 6, 1531-1550 (2005) · Zbl 1082.22011 · doi:10.1112/S0010437X05001429
[24] Sécherre, Vincent, Représentations lisses de \(\text{GL}_m(D)\). III. Types simples, Ann. Sci. École Norm. Sup. (4), 38, 6, 951-977 (2005) · Zbl 1106.22014 · doi:10.1016/j.ansens.2005.10.003
[25] Sécherre, Vincent, Proof of the Tadić conjecture (U0) on the unitary dual of \(\text{GL}_m(D)\), J. Reine Angew. Math., 626, 187-203 (2009) · Zbl 1170.22009 · doi:10.1515/CRELLE.2009.007
[26] Sécherre, Vincent; Stevens, Shaun, Représentations lisses de \(\text{GL}_m(D)\). IV. Représentations supercuspidales, J. Inst. Math. Jussieu, 7, 3, 527-574 (2008) · Zbl 1140.22014 · doi:10.1017/S1474748008000078
[27] Sécherre, Vincent; Stevens, Shaun, Smooth representations of \(GL_m(D)\). VI : semisimple types, Int. Math. Res. Not. IMRN, 13, 2994-3039 (2012) · Zbl 1246.22023 · doi:10.1093/imrn/rnr122
[28] Sécherre, Vincent; Stevens, Shaun, Block decomposition of the category of \(\ell \)-modular smooth representations of \(\text{GL}_n(\rm F)\) and its inner forms, Ann. Sci. Éc. Norm. Supér. (4), 49, 3, 669-709 (2016) · Zbl 1346.22009 · doi:10.24033/asens.2293
[29] Serre, Jean-Pierre, Linear representations of finite groups, 42, x+170 p. pp. (1977), Springer-Verlag: Springer-Verlag, New York-Heidelberg · Zbl 0355.20006
[30] Vignéras, Marie-France, Représentations \(l\)-modulaires d’un groupe réductif \(p\)-adique avec \(l\ne p\), 137, xviii+233 p. pp. (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc., Boston, MA · Zbl 0859.22001
[31] Vignéras, Marie-France, Cohomology of sheaves on the building and \(R\)-representations, Invent. Math., 127, 2, 349-373 (1997) · Zbl 0872.20042 · doi:10.1007/s002220050124
[32] Vignéras, Marie-France, Induced \(R\)-representations of \(p\)-adic reductive groups, Selecta Math. (N.S.), 4, 4, 549-623 (1998) · Zbl 0943.22017 · doi:10.1007/s000290050040
[33] Vignéras, Marie-France, Contributions to automorphic forms, geometry, and number theory, On highest Whittaker models and integral structures, 773-801 (2004), Johns Hopkins Univ. Press: Johns Hopkins Univ. Press, Baltimore, MD · Zbl 1084.11023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.