×

Observer-based attitude control of spacecraft under actuator dead zone and misalignment faults. (English) Zbl 07832778

Summary: The paper discusses the effect of non-smooth dead-zone (NDZ), and input actuator misalignment (AMA) during spacecraft attitude tracking maneuver in presence of parametric uncertainties and external perturbations. Initially, the input AMA and NDZ models are formulated to transform spacecraft attitude model dynamics. Subsequently, a new second order disturbance observer (SODO) is devised to get the total disturbance. The observer is developed considering system perturbations as extended states, with an additional term Introduced to improve the observer performance. Finally, a distinctive integral sliding mode control (ISMC) law is developed and integrated with the proposed SODO to perform spacecraft attitude control operations. Comparative simulations are conducted on the spacecraft attitude control model with input AMA, NDZ, system parametric uncertainties and external disturbances to show the effectiveness of the proposed control structure.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93B53 Observers
Full Text: DOI

References:

[1] Golpashin, A. E.; Yeong, H. C.; Ho, K.; Namachchivaya, N. S., Spacecraft attitude control: a consideration of thrust uncertainty. J. Guid. Control Dyn., 12, 2349-2365 (2020)
[2] Zhu, Z.; Guo, Y., Adaptive coordinated attitude control for spacecraft formation with saturating actuators and unknown inertia. J. Franklin Inst., 2, 1021-1037 (2019) · Zbl 1406.93182
[3] Xu, X.; Chen, M.; Li, T.; Wu, Q., Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay. Appl. Math. Comput. (2021) · Zbl 1497.93054
[4] Wang, X.; Tan, C. P., Output feedback active fault tolerant control for a 3-DOF laboratory helicopter with sensor fault. IEEE Trans. Autom. Sci. Eng., 1-12 (2023)
[5] Li, Z.; Yu, G.; Zhang, Q.; Song, S.; Cui, H., Adaptive sliding mode control for spacecraft rendezvous with unknown system parameters and input saturation. IEEE Access, 67724-67733 (2021)
[6] Huang, B.; Li, A. jun; Guo, Y.; Wang, C. qing, Rotation matrix based finite-time attitude synchronization control for spacecraft with external disturbances. ISA Trans., 141-150 (2019)
[7] Javaid, U.; Dong, H., Disturbance-observer-based attitude control under input nonlinearity. Trans. Inst. Meas. Control, 10, 2358-2367 (2021)
[8] Jiang, B.; Lu, J.; Liu, Y.; Cao, J., Periodic event-triggered adaptive control for attitude stabilization under input saturation. IEEE Trans. Circuits Syst. I, Regul. Pap., 1, 249-258 (2020) · Zbl 1468.93127
[9] Yang, J.; Duan, Y.; Ben-Larbi, M. K.; Stoll, E., Potential field-based sliding surface design and its application in spacecraft constrained reorientation. J. Guid. Control Dyn., 2, 399-409 (2021)
[10] Shao, X.; Hu, Q.; Shi, Y., Adaptive pose control for spacecraft proximity operations with prescribed performance under spatial motion constraints. IEEE Trans. Control Syst. Technol., 4, 1405-1419 (2021)
[11] Shen, Q.; Yue, C.; Goh, C. H.; Wu, B.; Wang, D., Rigid-body attitude stabilization with attitude and angular rate constraints. Automatica, 157-163 (2018) · Zbl 1387.93054
[12] Wang, X.; Tan, C. P.; Wu, F.; Wang, J., Fault-tolerant attitude control for rigid spacecraft without angular velocity measurements. IEEE Trans. Cybern., 3, 1216-1229 (2021)
[13] Ijaz, S.; Fuyang, C.; Hamayun, M. T.; Anwaar, H., Adaptive integral-sliding-mode control strategy for maneuvering control of f16 aircraft subject to aerodynamic uncertainty. Appl. Math. Comput. (2021) · Zbl 1510.93213
[14] Li, A.; Liu, M.; Cao, X.; Liu, R., Adaptive quantized sliding mode attitude tracking control for flexible spacecraft with input dead-zone via Takagi-Sugeno fuzzy approach. Inf. Sci., 746-773 (2022) · Zbl 1534.93226
[15] Jitpattanakul, A.; Pukdeboon, C., Adaptive output feedback integral sliding mode attitude tracking control of spacecraft without unwinding. Adv. Mech. Eng., 7, 1-16 (2017)
[16] Shen, Q.; Wang, D.; Zhu, S.; Poh, E. K., Integral-type sliding mode fault-tolerant control for attitude stabilization of spacecraft. IEEE Trans. Control Syst. Technol., 3, 1131-1138 (2015)
[17] Hu, Q.; Yu, Y.; Li, B.; Qi, J., Finite-time attitude tracking control for spacecraft with uncertain actuator configuration. Proc. Inst. Mech. Eng., G J. Aerosp. Eng., 13, 2457-2468 (2015)
[18] Chen, X.; Zhao, L., Observer-based finite-time attitude containment control of multiple spacecraft systems. IEEE Trans. Circuits Syst. II, Express Briefs, 4, 1273-1277 (2021)
[19] Zhang, J.; Zhao, W.; Shen, G.; Xia, Y., Disturbance observer-based adaptive finite-time attitude tracking control for rigid spacecraft. IEEE Trans. Syst. Man Cybern. Syst., 11, 6606-6613 (2021)
[20] Javaid, U.; Dong, H.; Ijaz, S.; Alkarkhi, T.; Haque, M., High-performance adaptive attitude control of spacecraft with sliding mode disturbance observer. IEEE Access, 41990-41999 (2022)
[21] Qiao, J.; Liu, Z.; Li, W., Anti-disturbance attitude control of combined spacecraft with enhanced control allocation scheme. Chin. J. Aeronaut., 8, 1741-1751 (2018)
[22] Vimal Kumar, S.; Raja, R.; Marshal Anthoni, S.; Cao, J.; Tu, Z., Robust finite-time non-fragile sampled-data control for t-s fuzzy flexible spacecraft model with stochastic actuator faults. Appl. Math. Comput., 483-497 (2018) · Zbl 1426.93164
[23] Ovchinnikov, M.; Barrington-Brown, J., 14 - attitude determination and control systems, 263-281
[24] Mercker, T. H.; Akella, M. R., Adaptive estimation and control algorithms for certain independent control axis misalignments. J. Guid. Control Dyn., 1, 72-85 (2014)
[25] Zhang, Z.; Yang, H.; Jiang, B., Fault tolerant attitude control of under-actuated spacecraft: theory and experiment. Chin. J. Aeronaut., 5, 465-474 (2023)
[26] Wang, Z.; Li, Y., Guaranteed cost spacecraft attitude stabilization under actuator misalignments using linear partial differential equations. J. Franklin Inst., 10, 6018-6040 (2020) · Zbl 1441.93240
[27] Wang, Z.; Li, Y., Rigid spacecraft nonlinear robust \(H_\infty\) attitude controller design under actuator misalignments. Nonlinear Dyn., 16, 15037-15054 (2023)
[28] Zhang, J.; Ye, D.; Sun, Z.; Liu, C., Extended state observer based robust adaptive control on SE(3) for coupled spacecraft tracking maneuver with actuator saturation and misalignment. Acta Astronaut., 3, 221-233 (2018)
[29] Hu, Q.; Niu, G.; Wang, C., Spacecraft attitude fault-tolerant control based on iterative learning observer and control allocation. Aerosp. Sci. Technol., 245-253 (2018)
[30] Gao, J.; Zhang, S.; Fu, Z., Fixed-time attitude tracking control for rigid spacecraft with actuator misalignments and faults. IEEE Access, 15696-15705 (2019)
[31] Hsu, K. C.; Wang, W. Y.; Lin, P. Z., Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and deadzones. IEEE Trans. Syst. Man Cybern., Part B, Cybern., 1, 374-380 (2004)
[32] Hu, Q.; Ma, G.; Xie, L., Robust and adaptive variable structure output feedback control of uncertain systems with input nonlinearity. Automatica, 2, 552-559 (2008) · Zbl 1283.93063
[33] Hu, Q.; Li, L.; Friswell, M. I., Spacecraft anti-unwinding attitude control with actuator nonlinearities and velocity limit. J. Guid. Control Dyn., 10, 2042-2050 (2015)
[34] Javaid, U.; Razzaq, M. J.; Rafique, S. F., PD integrated sliding mode controller design for attitude tracking control of rigid body spacecraft, 537-542
[35] Wang, X. S.; Su, C. Y.; Hong, H., Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica, 3, 407-413 (2004) · Zbl 1036.93036
[36] Bhat, S. P.; Bernstein, D. S., A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon. Syst. Control Lett., 1, 63-70 (2000) · Zbl 0986.93063
[37] Khoo, S.; Xie, L.; Zhao, S.; Man, Z., Multi-surface sliding control for fast finite-time leader-follower consensus with high order siso uncertain nonlinear agents. Int. J. Robust Nonlinear Control, 2388-2404 (2014) · Zbl 1302.93061
[38] Xia, Y.; Zhu, Z.; Fu, M.; Wang, S., Attitude tracking of rigid spacecraft with bounded disturbances. IEEE Trans. Ind. Electron., 2, 647-659 (2011)
[39] Erdong, J.; Zhaowei, S., Passivity-based control for a flexible spacecraft in the presence of disturbances. Int. J. Non-Linear Mech., 4, 348-356 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.