×

Composite fault tolerant attitude control for flexible satellite system under disturbance and input delay. (English) Zbl 1497.93054

Summary: This paper deals with the attitude control problem of flexible satellite system under time-varying disturbance, actuator fault and input time-delay. Initially, in order to compensate for the negative effects of the disturbance and fault, two observer designs are proposed to obtain their estimations, respectively. Secondly, by combining anti-disturbance control, fault tolerant control and time-delay control approaches, a composite delay-dependent controller is presented and an augmented closed-loop system is derived. Then, based on Lyapunov stability theory and linear matrix inequality (LMI) approach, two sufficient conditions on ensuring the asymptotical stability and \(H_\infty\) performance index are established, in which the observer gains and controller one can be computed by resorting to the Matlab LMI Toolbox. Finally, some simulations and comparisons are provided to illustrate the effectiveness and advantages of the proposed control methods.

MSC:

93B36 \(H^\infty\)-control
93C73 Perturbations in control/observation systems
94C12 Fault detection; testing in circuits and networks

Software:

Matlab; LMI toolbox
Full Text: DOI

References:

[1] Xie, Y. C.; Lei, Y. J.; Guo, J. X., Spacecraft Dynamics and Control (2018), Beijing Institute of Technology Press: Beijing Institute of Technology Press Beijing
[2] Bai, H. H.; Huang, C. Q.; Zeng, J. P., Robust nonlinear \(h_\infty\) output-feedback control for flexible spacecraft attitude manoeuvring, Trans. Inst. Meas. Control, 41, 7, 2026-2038 (2019)
[3] Xiao, B.; Yin, S.; Kaynak, O., Attitude stabilization control of flexible satellite systems with high accuracy: an estimator-based approach, IEEE/ASME Trans. Mechatron., 22, 1, 349-358 (2017)
[4] Liu, Q. H.; Liu, M.; Yu, J. Y., Adaptive fault-tolerant control for attitude tracking of flexible spacecraft with limited data transmission, IEEE Trans. Syst. Man Cybern. Syst. (2019)
[5] Chen, T.; Shan, J. J.; Wen, H., Distributed adaptive attitude control for networked underactuated flexible spacecraft, IEEE Trans. Aerosp. Electron. Syst., 55, 1, 215-225 (2019)
[6] Huo, J. H.; Meng, T.; Song, R. T.; Jin, Z. H., Adaptive prediction backstepping attitude control for liquid-filled micro-satellite with flexible appendages, Acta Astronaut., 152, 557-566 (2018)
[7] Dong, R. Q.; Wu, Y. Y.; Zhang, Y.; Wu, A. G., Adaptive backstepping attitude control law with \(l_2\)-gain performance for flexible spacecraft, Int. J. Aerospace Eng. (2019)
[8] Cao, L.; Xiao, B.; Golestani, M., Robust fixed-time attitude stabilization control of flexible spacecraft with actuator uncertainty, Nonlinear Dyn. (2020) · Zbl 1516.70041
[9] Cao, L.; Xiao, B.; Golestani, M.; Ran, D. C., Faster fixed-time control of flexible spacecraft attitude stabilization, IEEE Trans. Ind. Inf., 16, 2, 1281-1290 (2020)
[10] Najafizadeh, S. N.; Hadi, J.; Mahdi, F., Adaptive fuzzy PID control strategy for spacecraft attitude control, Int. J. Fuzzy Syst., 21, 3, 769-781 (2019)
[11] Qi, N. M.; Yuan, Q. F.; Liu, Y. F.; Huo, M. Y.; Cao, S. L., Consensus vibration control for large flexible structures of spacecraft with modified positive position feedback control, IEEE Trans. Control Syst. Technol., 27, 4, 1712-1719 (2019)
[12] Hou, L. L.; Sun, H. B., Anti-disturbance attitude control of flexible spacecraft with quantized states, Aerosp. Sci. Technol. (2020)
[13] Liu, Y.; Fu, Y.; He, W.; Hui, Q., Modeling and observer-based vibration control of a flexible spacecraft with external disturbances, IEEE Trans. Ind. Electron., 66, 11, 8648-8658 (2019)
[14] Sun, H. B.; Hou, L. L.; Zong, G. D.; Guo, L., Composite anti-disturbance attitude and vibration control for flexible spacecraft, IET Control Theory Appl., 11, 14, 2383-2390 (2017)
[15] Hang, B.; Cao, S. Y., Anti-disturbance attitude control of flexible satellite system based on t-s fuzzy modeling, Int. J. Comput. Electr. Eng., 11, 2, 91-100 (2019)
[16] Xiao, B.; Hu, Q. L.; Zhang, Y. M., Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement, J. Guidance Control Dyn., 34, 5, 1556-1561 (2011)
[17] Zhao, D.; Yang, H.; Jiang, B.; Wen, L. Y., Attitude stabilization of a flexible spacecraft under actuator complete failure, Acta Astronaut., 123, 129-136 (2016)
[18] Jin, X. Z.; Zhao, X. F.; Yu, J. G.; Wu, X. M.; Chi, J., Adaptive fault-tolerant consensus for a class of leader-following systems using neural network learning strategy, Neural Netw., 121, 474-483 (2020) · Zbl 1443.93126
[19] Jin, X. Z.; Che, W. W.; Wu, Z. G.; Wang, H., Analog control circuit designs for a class of continuous-time adaptive fault-tolerant control systems, IEEE Trans. Cybern. (2020)
[20] Zhang, X. Y.; Zong, Q.; Tian, B. L.; Liu, W. J., Continuous robust fault-tolerant control and vibration suppression for flexible spacecraft without angular velocity, Int. J. Robust Nonlinear Control, 29, 12, 3915-3935 (2019) · Zbl 1426.93075
[21] Long, H. H.; Zhao, J. K., Robust constrained fault-tolerant attitude control for flexible spacecraft, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 232, 16, 3011-3023 (2018)
[22] Jin, X. Z.; Yang, G. H.; Chang, X. H.; Che, W. W., Robust fault-tolerant \(h_\infty\) control with adaptive compensation, Acta Autom. Sin., 39, 1, 31-42 (2013) · Zbl 1289.93045
[23] Xiong, J.; Chang, X. H.; Yi, X. J., Design of robust nonfragile fault detection filter for uncertain dynamic systems with quantization, Appl. Math. Comput., 338, 774-788 (2018) · Zbl 1427.93064
[24] Xiong, J.; Chang, X. H.; Park, J. H.; Li, Z. M., Nonfragile fault-tolerant control of suspension systems subject to input quantization and actuator fault, Int. J. Robust Nonlinear Control, 30, 16, 6720-6743 (2020) · Zbl 1525.93058
[25] Liu, G. J.; Cao, Y. Y.; Chang, X. H., Fault detection observer design for fuzzy systems with local nonlinear models via fuzzy lyapunov function, Int. J. Control Autom. Syst., 15, 5, 2233-2242 (2017)
[26] Hu, Q. L.; Xiao, B., Adaptive fault tolerant control using integral sliding mode strategy with application to flexible spacecraft, Int. J. Syst. Sci., 44, 12, 2273-2286 (2013) · Zbl 1307.93097
[27] Mirshams, M.; Khosrojerdi, M.; Hasani, M., Passive fault-tolerant sliding mode attitude control for flexible spacecraft with faulty thrusters, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 228, 12, 2343-2357 (2014)
[28] Cao, S. Y.; Hang, B., Adaptive fault tolerant attitude control of flexible satellite systems based on takagi-sugeno fuzzy disturbance modeling, Trans. Inst. Meas. Control (2020)
[29] Lu, K. F.; Li, T. Y.; Zhang, L. J., Active attitude fault-tolerant tracking control of flexible spacecraft via the chebyshev neural network, Trans. Inst. Meas. Control, 41, 4, 925-933 (2019)
[30] Chen, T.; Shan, J. J., Rotation-matrix-based attitude tracking for multiple flexible spacecraft with actuator faults, Journal of Guidance Control and Dynamics, 42, 1, 181-188 (2019)
[31] Zhang, R.; Li, T.; Guo, L., \(h_\infty\) Control for flexible spacecraft with time-varying input delay, Math. Probl. Eng., 2013, 1-7 (2013) · Zbl 1299.93208
[32] Zhu, B. L.; Zhang, Z. P.; Suo, M. L.; Chen, Y.; Li, S. L., Sampled-data mixed \(h_\infty\) and passive control for attitude stabilization and vibration suppression of flexible spacecrafts with input delay, J. Vib. Control, 24, 22, 5401-5417 (2018)
[33] Li, T.; Zhang, B.; Qiao, J. Z., Multi-bound-dependent fault-tolerant control for flexible spacecraft under partial loss of actuator effectiveness, Control Theory Appl., 34, 3, 383-392 (2017)
[34] Zhang, R.; Li, T.; Guo, L., Disturbance observer based control for flexible spacecraft with time-varying input delay, Adv. Differ. Equ., 142, 1-12 (2013) · Zbl 1390.93293
[35] Kumar, S. V.; Raja, R.; Anthoni, S. M.; Cao, J. D.; Tu, Z. W., Robust finite-time non-fragile sampled-data control for t-s fuzzy flexible spacecraft model with stochastic actuator faults, Appl. Math. Comput., 321, 483-497 (2018) · Zbl 1426.93164
[36] Xu, S. D.; Sun, G. H.; Sun, W. C., Takagi-sugeno fuzzy model based robust dissipative control for uncertain flexible spacecraft with saturated time-delay input, ISA Trans., 66, 105-121 (2017)
[37] Qiao, J. Z.; Li, X. F.; Xu, J. W., A composite disturbance observer and \(h_\infty\) control scheme for flexible spacecraft with measurement delay and input delay, Chin. J. Aeronaut., 32, 6, 1472-1480 (2019)
[38] Zhang, X. P.; Qiao, J. Z.; Guo, L.; Li, W. S., Sliding mode friction observer based control for flexible spacecraft with reaction wheel, IET Control Theory Appl., 11, 8, 1274-1281 (2017)
[39] Zhang, R.; Qiao, J. Z.; Li, T.; Guo, L., Robust fault-tolerant control for flexible spacecraft against partial actuator failures, Nonlinear Dyn., 76, 3, 1753-1760 (2014) · Zbl 1314.93015
[40] Zhu, Y. K.; Guo, L.; Qiao, J. Z.; Li, W. S., An enhanced anti-disturbance attitude control law for flexible spacecrafts subject to multiple disturbances, Control Eng. Pract., 84, 274-283 (2018)
[41] Cao, S. Y.; Zhao, Y. F., Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation, Nonlinear Dyn., 89, 4, 2657-2667 (2017) · Zbl 1377.93115
[42] Wang, S. B.; Cao, Y. Y.; Huang, T. W.; Wen, S. P., Passivity and passification of memristive neural networks with leakage term and time-varying delays, Appl. Math. Comput., 361, 294-310 (2019) · Zbl 1428.93080
[43] Li, Y. K.; Chen, M.; Li, T.; Shi, P., Anti-disturbance reference mode resilient dynamic output feedback control for turbofan systems, Appl. Math. Comput. (2020) · Zbl 1508.93211
[44] Lei, F. R.; Xu, X. F.; Li, T.; Song, G. F., Attitude tracking control for mars entry vehicle via t-s model with time-varying input delay, Nonlinear Dyn., 85, 3, 1749-1764 (2016) · Zbl 1349.93288
[45] Ali, M. S.; Vadivel, R.; Alsaedi, A.; Ahmad, B., Extended dissipativity and event-triggered synchronization for t-s fuzzy Markovian jumping delayed stochastic neural networks with leakage delays via fault-tolerant control, Soft Comput., 24, 5, 3675-3694 (2020) · Zbl 1436.93004
[46] Vadivel, R.; Ali, M. S.; Joo, Y. H., Drive-response synchronization of uncertain markov jump generalized neural networks with interval time varying delays via decentralized event-triggered communication scheme, J. Frankl. Inst. Eng. Appl. Math., 357, 11, 6824-6857 (2020) · Zbl 1447.93363
[47] Zhu, Y. K.; Guo, L.; Yu, X.; Yuan, Y., An enhanced anti-disturbance control law for systems with multiple disturbances, Science China Information Sciences, 63, 10, 1-3 (2020)
[48] Chen, M.; Xiong, S. X.; Wu, Q. X., Tracking flight control of quadrotor based on disturbance observer, IEEE Transactions on Systems Man Cybernetics-Systems, 51, 3, 1414-1423 (2021)
[49] Chen, M.; Li, Y. K., Model reference resilient control for the helicopter with time-varying disturbance, International Journal of Robust and Nonlinear Control, 29, 15, 5095-5117 (2019) · Zbl 1426.93219
[50] Xia, R. S.; Wu, Q. X.; Chen, M., Disturbance observer-based optimal longitudinal trajectory control of near space vehicle, Science China Information Sciences, 62, 5, 1-3 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.