×

On necessary and sufficient conditions for the monogeneity of a certain class of polynomials. (English) Zbl 1487.11097

Summary: Let \(f(x)\in\mathbb{Z}[x]\) be monic and irreducible over \(\mathbb{Q}\), with \(\deg (f)=n\). Let \(K = \mathbb{Q}(\theta)\), where \(f(\theta)=0\), and let \(\mathbb{Z}_K\) denote the ring of integers of \(K\). We say \(f(x)\) is monogenic if \(\{1,\theta,\theta^2,\dots,\theta^{n-1}\}\) is a basis for \(\mathbb{Z}_K \). Otherwise, \(f(x)\) is called non-monogenic. In this article, we give necessary and sufficient conditions for a certain class of polynomials to be monogenic. Using these conditions allows us to generate infinite families of non-monogenic polynomials. In particular, for quadrinomials our results show that there exist infinitely many primes \(p\geq 3\), and integers \(t\geq 1\) coprime to \(p\), such that \(f(x)=x^p-2ptx^{p -1}+p^2t^2x^{p-2}+1\) is non-monogenic. Finally, we illustrate this situation with an explicit example.

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11Y40 Algebraic number theory computations
11R09 Polynomials (irreducibility, etc.)
12F05 Algebraic field extensions
Full Text: DOI

References:

[1] Ahmad, S.—Nakahara, T.—Hameed, A.: On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput. 26(3) (2016), 577-583. · Zbl 1404.11124
[2] Ahmad, S.—Nakahara T.—Husnine S. M.: Power integral bases for certain pure sextic fields, Int. J. Number Theory 10(8) (2014), 2257-2265. · Zbl 1316.11094
[3] Brauer, A.: On the irreducibility of polynomials with large third coefficient, Amer. J. Math. 70 (1948), 423-432. · Zbl 0035.00902
[4] Cohen, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, 2000. · Zbl 0977.11056
[5] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Gött. Abhandlungen 23(1) (1978), 3-37
[6] Eloff, D.—Spearman, B.—Williams, K.: A_4-sextic fields with a power basis, Missouri J. Math. Sci. 19 (2007), 188-194. · Zbl 1229.11136
[7] Gaál, I.—Remete, L.: Power integral bases in a family of sextic fields with quadratic subfields, Tatra Mt. Math. Publ. 64 (2015), 59-66. · Zbl 1393.11068
[8] Gaál, I.—Remete, L.: Integral bases and monogenity of pure fields, J. Number Theory 173 (2017), 129-146. · Zbl 1419.11118
[9] Gassert, T. A.: A note on the monogeneity of power maps, Albanian J. Math. 11(1) (2017), 3-12. · Zbl 1392.11082
[10] Harrington, J.—Jones, L.: Monogenic binomial compositions, Taiwanese J. Math. 24(5) (2020), 1073-1090. · Zbl 1467.11099
[11] Harrington, J.—Jones, L.: Monogenic cyclotomic compositions, Kodai Math. J. 44 (2021) 115-125. · Zbl 1477.11181
[12] Jones, L.: A brief note on some infinite families of monogenic polynomials, Bull. Aust. Math. Soc. 100(2) (2019), 239-244. · Zbl 1461.11138
[13] Jones, L.: Monogenic polynomials with non-squarefree discriminant, Proc. Amer. Math. Soc. 148(4) (2020), 1527-1533. · Zbl 1436.11125
[14] Jones, L.: Generating infinite families of monogenic polynomials using a new discriminant formula, Albanian J. Math. 14(1) (2020), 37-45. · Zbl 1441.11268
[15] Jones, L.: Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith. 197(2) (2021), 213-219. · Zbl 1465.11204
[16] Jones, L.—Phillips, T.: Infinite families of monogenic trinomials and their Galois groups, Internat. J. Math. 29(5) (2018), Art. ID 1850039, 11 pp. · Zbl 1423.11181
[17] Jones, L.—White, D.: Monogenic trinomials with non-squarefree discriminant, https://arxiv.org/abs/1908.07947v1. · Zbl 1478.11125
[18] Kedlaya, K.: A construction of polynomials with squarefree discriminants, Proc. Amer. Math. Soc. 140(9) (2012), 3025-3033. · Zbl 1301.11072
[19] Lavallee, M.—Spearman, B.—Yang, Q.: PSL(2, 7) septimic fields with a power basis, J. Théor. Nombres Bordeaux 24(2) (2012), 369-375. · Zbl 1280.11062
[20] Lavallee, M.—Spearman, B.—Williams, K.—Yang, Q.: Dihedral quintic fields with a power basis, Math. J. Okayama Univ. 47 (2005), 75-79. · Zbl 1161.11393
[21] Perron, O.: Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math. 132 (1907), 288-307 (in German). · JFM 38.0118.02
[22] Ratliff, L. J.—Rush, D. E.—Shah, K.: Power integral bases for Selmer-like number fields, J. Number Theory 121(1) (2006), 90-113. · Zbl 1171.12002
[23] Spearman, B.: Monogenic A_4 quartic fields, Int. Math. Forum 1(40) (2006), 1969-1974. · Zbl 1190.11057
[24] Spearman, B.—Watanabe, A.—Williams, K: PSL(2, 5) sextic fields with a power basis, Kodai Math. J. 29(1) (2006), 5-12. · Zbl 1096.11038
[25] Spearman, B.—Williams, K.: Cubic fields with a power basis, Rocky Mountain J. Math. 31(3) (2001), 1103-1109. · Zbl 0992.11059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.