Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 11, 2022

On necessary and sufficient conditions for the monogeneity of a certain class of polynomials

  • Lenny Jones
From the journal Mathematica Slovaca

Abstract

Let f(x) ∈ ℤ[x] be monic and irreducible over ℚ, with deg(f) = n. Let K = ℚ(θ), where f(θ) = 0, and let ℤK denote the ring of integers of K. We say f(x) is monogenic if {1, θ, θ2, …, θn−1} is a basis for ℤK. Otherwise, f(x) is called non-monogenic. In this article, we give necessary and sufficient conditions for a certain class of polynomials to be monogenic. Using these conditions allows us to generate infinite families of non-monogenic polynomials. In particular, for quadrinomials our results show that there exist infinitely many primes p ≥ 3, and integers t ≥ 1 coprime to p, such that f(x) = xp − 2ptxp−1 + p2t2xp−2 + 1 is non-monogenic. Finally, we illustrate this situation with an explicit example.

  1. (Communicated by István Gaál)

Acknowledgement

The author thanks the anonymous referees for the helpful suggestions.

References

[1] Ahmad, S.—Nakahara, T.—Hameed, A.: On certain pure sextic fields related to a problem of Hasse, Internat. J. Algebra Comput. 26(3) (2016), 577–583.10.1142/S0218196716500259Search in Google Scholar

[2] Ahmad, S.—Nakahara T.—Husnine S. M.: Power integral bases for certain pure sextic fields, Int. J. Number Theory 10(8) (2014), 2257–2265.10.1142/S1793042114500778Search in Google Scholar

[3] Brauer, A.: On the irreducibility of polynomials with large third coefficient, Amer. J. Math. 70 (1948), 423–432.10.2307/2372341Search in Google Scholar

[4] Cohen, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, 2000.Search in Google Scholar

[5] Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Gött. Abhandlungen 23(1) (1978), 3–37Search in Google Scholar

[6] Eloff, D.—Spearman, B.—Williams, K.: A4-sextic fields with a power basis, Missouri J. Math. Sci. 19 (2007), 188–194.10.35834/mjms/1316032976Search in Google Scholar

[7] Gaál, I.—Remete, L.: Power integral bases in a family of sextic fields with quadratic subfields, Tatra Mt. Math. Publ. 64 (2015), 59–66.10.1515/tmmp-2015-0041Search in Google Scholar

[8] Gaál, I.—Remete, L.: Integral bases and monogenity of pure fields, J. Number Theory 173 (2017), 129–146.10.1016/j.jnt.2016.09.009Search in Google Scholar

[9] Gassert, T. A.: A note on the monogeneity of power maps, Albanian J. Math. 11(1) (2017), 3–12.10.51286/albjm/1495919797Search in Google Scholar

[10] Harrington, J.—Jones, L.: Monogenic binomial compositions, Taiwanese J. Math. 24(5) (2020), 1073–1090.10.11650/tjm/200201Search in Google Scholar

[11] Harrington, J.—Jones, L.: Monogenic cyclotomic compositions, Kodai Math. J. 44 (2021) 115–125.10.2996/kmj44107Search in Google Scholar

[12] Jones, L.: A brief note on some infinite families of monogenic polynomials, Bull. Aust. Math. Soc. 100(2) (2019), 239–244.10.1017/S0004972719000182Search in Google Scholar

[13] Jones, L.: Monogenic polynomials with non-squarefree discriminant, Proc. Amer. Math. Soc. 148(4) (2020), 1527–1533.10.1090/proc/14858Search in Google Scholar

[14] Jones, L.: Generating infinite families of monogenic polynomials using a new discriminant formula, Albanian J. Math. 14(1) (2020), 37–45.10.51286/albjm/1608313765Search in Google Scholar

[15] Jones, L.: Some new infinite families of monogenic polynomials with non-squarefree discriminant, Acta Arith. 197(2) (2021), 213–219.10.4064/aa200211-21-7Search in Google Scholar

[16] Jones, L.—Phillips, T.: Infinite families of monogenic trinomials and their Galois groups, Internat. J. Math. 29(5) (2018), Art. ID 1850039, 11 pp.10.1142/S0129167X18500398Search in Google Scholar

[17] Jones, L.—White, D.: Monogenic trinomials with non-squarefree discriminant, https://arxiv.org/abs/1908.07947v1.Search in Google Scholar

[18] Kedlaya, K.: A construction of polynomials with squarefree discriminants, Proc. Amer. Math. Soc. 140(9) (2012), 3025–3033.10.1090/S0002-9939-2012-11231-6Search in Google Scholar

[19] Lavallee, M.—Spearman, B.—Yang, Q.: PSL(2, 7) septimic fields with a power basis, J. Théor. Nombres Bordeaux 24(2) (2012), 369–375.10.5802/jtnb.801Search in Google Scholar

[20] Lavallee, M.—Spearman, B.—Williams, K.—Yang, Q.: Dihedral quintic fields with a power basis, Math. J. Okayama Univ. 47 (2005), 75–79.Search in Google Scholar

[21] Perron, O.: Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math. 132 (1907), 288–307 (in German).10.1515/crll.1907.132.288Search in Google Scholar

[22] Ratliff, L. J.—Rush, D. E.—Shah, K.: Power integral bases for Selmer-like number fields, J. Number Theory 121(1) (2006), 90–113.10.1016/j.jnt.2006.01.012Search in Google Scholar

[23] Spearman, B.: Monogenic A4 quartic fields, Int. Math. Forum 1(40) (2006), 1969–1974.10.12988/imf.2006.06174Search in Google Scholar

[24] Spearman, B.—Watanabe, A.—Williams, K: PSL(2, 5) sextic fields with a power basis, Kodai Math. J. 29(1) (2006), 5–12.10.2996/kmj/1143122382Search in Google Scholar

[25] Spearman, B.—Williams, K.: Cubic fields with a power basis, Rocky Mountain J. Math. 31(3) (2001), 1103–1109.10.1216/rmjm/1020171683Search in Google Scholar

Received: 2021-02-02
Accepted: 2021-05-19
Published Online: 2022-06-11
Published in Print: 2022-06-27

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 24.10.2024 from https://www.degruyter.com/document/doi/10.1515/ms-2022-0039/html
Scroll to top button