×

On certain pure sextic fields related to a problem of Hasse. (English) Zbl 1404.11124

Summary: An algebraic number ring is monogenic, or one-generated, if it has the form \(\mathbf{Z}[\alpha]\) for a single algebraic integer \(\alpha\). It is a problem of Hasse to characterize, whether an algebraic number ring is monogenic or not. In this note, we prove that if \(m\) is a square-free rational integer, \(m\equiv 1\pmod 4\) and \(m\not\equiv\pm 1\pmod 9\), then the pure sextic field \(L=\mathbb{Q}(\root6\of {m})\) is not monogenic. Our results are illustrated by examples.

MSC:

11R04 Algebraic numbers; rings of algebraic integers
11R21 Other number fields
Full Text: DOI

References:

[1] 1. S. Ahmad, T. Nakahara and S. M. Husnine, Power integral bases for certain pure sextic fields, Int. J. Number Theory10(8) (2014) 2257-2265. [Abstract] genRefLink(128, ’S0218196716500259BIB001’, ’000344455600016’);
[2] 2. Ş. Alaca and K. S. Williams, Introductory Algebraic Number Theory (Cambridge University Press, 2004), www.Cambridge.org/9780521832502 . · Zbl 1035.11001
[3] 3. I. Gáal, Power integral bases in algebraic number fields, Ann. Univ. Sci. Budapest. Sect. Comp.18 (1999) 61-87. · Zbl 0936.11072
[4] 4. I. Gáal, Diophantine Equations and Power Integral Bases, New Computational Methods (Birkhäuser, Berlin, 2002). genRefLink(16, ’S0218196716500259BIB004’, ’10.1007 · Zbl 1016.11059
[5] 5. I. Gáal, P. Olajos and M. Pohst, Power integral bases in orders of composite fields, Exp. Math.11(1) (2002) 87-90. genRefLink(16, ’S0218196716500259BIB005’, ’10.1080
[6] 6. K. Gyory, Discriminant form and index form equations, in Algebraic Number Theory and Diophantine Analysis, eds. F. Halter-Koch and R. F. Tichy (Walter de Gruyter, Berlin, 2000), pp. 191-214. genRefLink(16, ’S0218196716500259BIB006’, ’10.1515
[7] 7. A. Hameed, T. Nakahara, S. M. Husnine and S. Ahmad, On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Res. Math.7 (2011) 19-24. · Zbl 1268.11147
[8] 8. I. Jaŕasi, Power integral bases in sextic fields with a cubic subfield, Acta Sci. Math.69 (2003) 3-14. · Zbl 1027.11095
[9] 9. Y. Motoda and T. Nakahara, Power integral bases in algebraic number fields whose Galois groups are 2-elementary abelian, Arch. Math.83 (2004) 309-316. genRefLink(16, ’S0218196716500259BIB009’, ’10.1007
[10] 10. Y. Motoda, T. Nakahara and S. I. A. Shah, On a problem of Hasse, J. Number Theory96 (2002) 326-334. genRefLink(16, ’S0218196716500259BIB010’, ’10.1016
[11] 11. Y. Motoda, T. Nakahara, S. I. A. Shah and T. Uehara, On a problem of Hasse for certain imaginary abelian fields, RIMS Kôkyûroku BessatsuB12 (2009) 209-221. · Zbl 1251.11073
[12] 12. T. Nakahara, On cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math.94 (1982) 125-132. genRefLink(16, ’S0218196716500259BIB012’, ’10.1007
[13] 13. A. Petho and M. Pohst, On the indices of multiquadratic number fields, Acta Arith.153(4) (2012) 393-414. genRefLink(16, ’S0218196716500259BIB013’, ’10.4064
[14] 14. K. Yamamura, Bibliography on determinantal expressions of relative class numbers of imaginary abelian number fields, dreaming in dreams, in Proc. 5th China-Japan Seminar on number theory held at Kinki University (World Scientific, 2009), p. 278.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.