×

Topological phenomena in honeycomb Floquet metamaterials. (English) Zbl 1535.34050

Summary: Being driven by the goal of finding edge modes and of explaining the occurrence of edge modes in the case of time-modulated metamaterials in the high-contrast and subwavelength regime, we analyse the topological properties of Floquet normal forms of periodically parameterized time-periodic linear ordinary differential equations \(\left\{ \frac{d}{dt}X = A_\alpha (t)X\right\}_{\alpha \in{\mathbb{T}}^d} \). In fact, our main goal being the question whether an analogous principle as the bulk-boundary correspondence of solid-state physics is possible in the case of Floquet metamaterials, i.e., subwavelength high-contrast time-modulated metamaterials. This paper is a first step in that direction. Since the bulk-boundary correspondence states that topological properties of the bulk materials characterize the occurrence of edge modes, we dedicate this paper to the topological analysis of subwavelength solutions in Floquet metamaterials. This work should thus be considered as a basis for further investigation on whether topological properties of the bulk materials are linked to the occurrence of edge modes. The subwavelength solutions being described by a periodically parameterized time-periodic linear ordinary differential equation \(\left\{ \frac{d}{dt}X = A_\alpha (t)X\right\}_{\alpha \in{\mathbb{T}}^d} \), we put ourselves in the general setting of periodically parameterized time-periodic linear ordinary differential equations and introduce a way to (topologically) classify a Floquet normal form \(F\), \(P\) of the associated fundamental solution \(\left\{ X_\alpha (t) = P(\alpha ,t)\exp (tF_\alpha )\right\}_{\alpha \in{\mathbb{T}}^d} \). This is achieved by analysing the topological properties of the eigenvalues and eigenvectors of the monodromy matrix \(X_\alpha (T)\) and the Lyapunov transformation \(P(\alpha ,t)\). The corresponding topological invariants can then be applied to the setting of Floquet metamaterials. In this paper these general results are considered in the case of a hexagonal structure. We provide two interesting examples of topologically non-trivial time-modulated hexagonal structures.

MSC:

34G10 Linear differential equations in abstract spaces
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
37C60 Nonautonomous smooth dynamical systems
34C14 Symmetries, invariants of ordinary differential equations

References:

[1] Ammari, H., Cao, J., Hiltunen, E.O.: Nonreciprocal wave propagation in space-time modulated media. Multiscale Model. Simul. arXiv preprint arXiv:2109.07220 (2022) (to appear)
[2] Ammari, H., Davies, B., Hiltunen, E.O.: Functional analytic methods for discrete approximations of subwavelength resonator systems. arXiv preprint arXiv:2106.12301 (2021)
[3] Ammari, H., Davies, B., Hiltunen, E.O.: Robust edge modes in dislocated systems of subwavelength resonators. J. Lond. Math. Soc. (2022) · Zbl 1522.35158
[4] Ammari, H.; Davies, B.; Hiltunen, EO; Yu, S., Topologically protected edge modes in one-dimensional chains of subwavelength resonators, J. Math. Pures Appl., 144, 17-49 (2020) · Zbl 1454.35056 · doi:10.1016/j.matpur.2020.08.007
[5] Ammari, H.; Hiltunen, EO, Time-dependent high-contrast subwavelength resonators, J. Comput. Phys., 445 (2021) · Zbl 07515850 · doi:10.1016/j.jcp.2021.110594
[6] Ammari, H.; Hiltunen, EO; Kosche, T., Asymptotic Floquet theory for first order odes with finite Fourier series perturbation and its applications to Floquet metamaterials, J. Differ. Equ., 319, 227-287 (2022) · Zbl 1525.34037 · doi:10.1016/j.jde.2022.02.047
[7] Asbóth, J.K., Oroszlány, L., Pályi, A.: A short course on topological insulators. Lect. Notes Phys., 919 (2016) · Zbl 1331.82002
[8] Atala, M.; Aidelsburger, M.; Barreiro, JT; Abanin, D.; Kitagawa, T.; Demler, E.; Bloch, I., Direct measurement of the Zak phase in topological Bloch bands, Nat. Phys., 9, 795 (2013) · doi:10.1038/nphys2790
[9] Chruscinski, D., Jamiolkowski, A.: Geometric Phases in Classical and Quantum Mechanics. Mathematical Surveys and Monographs, vol. 36. Birkhäuser Basel, Providence (2004) · Zbl 1075.81002
[10] Drouot, A.: The bulk-edge correspondence for continuous dislocated systems. arXiv preprint arXiv:1810.10603 (2018)
[11] Drouot, A.: The bulk-edge correspondence for continuous honeycomb lattices. arXiv preprint arXiv:1901.06281 (2019)
[12] Drouot, A., Fefferman, C.L., Weinstein, M.I.: Defect modes for dislocated periodic media. arXiv preprint arXiv:1810.05875 (2018)
[13] Essin, AM; Gurarie, V., Bulk-boundary correspondence of topological insulators from their respective Green’s functions, Phys. Rev. B, 84, 04 (2011) · doi:10.1103/PhysRevB.84.125132
[14] Fan, L.; Yu, W-W; Zhang, S-Y; Zhang, H.; Ding, J., Zak phases and band properties in acoustic metamaterials with negative modulus or negative density, Phys. Rev. B, 94 (2016) · doi:10.1103/PhysRevB.94.174307
[15] Fefferman, CL; Lee-Thorp, JP; Weinstein, MI, Topologically protected states in one-dimensional continuous systems and Dirac points, Proc. Natl. Acad. Sci. U.S.A., 111, 24, 8759-8763 (2014) · Zbl 1355.34124 · doi:10.1073/pnas.1407391111
[16] Fefferman, CL; Lee-Thorp, JP; Weinstein, MI, Edge states in honeycomb structures, Ann. PDE, 2, 2, 12 (2016) · Zbl 1404.35128 · doi:10.1007/s40818-016-0015-3
[17] Fefferman, CL; Lee-Thorp, JP; Weinstein, MI, Honeycomb Schrödinger operators in the strong binding regime, Commun. Pure Appl. Math., 71, 6, 1178-1270 (2018) · Zbl 1414.35061 · doi:10.1002/cpa.21735
[18] Fefferman, CL; Weinstein, MI, Honeycomb lattice potentials and Dirac points, J. Am. Math. Soc., 25, 4, 1169-1220 (2012) · Zbl 1316.35214 · doi:10.1090/S0894-0347-2012-00745-0
[19] Fleury, R.; Khanikaev, AB; Alù, A., Floquet topological insulators for sound, Nat. Commun., 7, 1, 1-11 (2016) · doi:10.1038/ncomms11744
[20] Graf, GM; Porta, M., Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 3, 851-895 (2013) · Zbl 1291.82120 · doi:10.1007/s00220-013-1819-6
[21] Graf, GM; Shapiro, J., The bulk-edge correspondence for disordered chiral chains, Commun. Math. Phys., 363, 3, 829-846 (2018) · Zbl 1401.82031 · doi:10.1007/s00220-018-3247-0
[22] Graf, GM; Tauber, C., Bulk-edge correspondence for two-dimensional Floquet topological insulators, Ann. Henri Poincaré, 19, 3, 709-741 (2018) · Zbl 1392.82008 · doi:10.1007/s00023-018-0657-7
[23] Harper, F.; Roy, R.; Rudner, MS; Sondhi, S., Topology and broken symmetry in Floquet systems, Annu. Rev. Condens. Matter Phys., 11, 345-368 (2020) · doi:10.1146/annurev-conmatphys-031218-013721
[24] Hasan, MZ; Kane, CL, Colloquium: topological insulators, Rev. Mod. Phys., 82, 4, 3045 (2010) · doi:10.1103/RevModPhys.82.3045
[25] Koutserimpas, TT; Fleury, R., Zero refractive index in time-Floquet acoustic metamaterials, J. Appl. Phys., 123, 9 (2018) · doi:10.1063/1.5006542
[26] Koutserimpas, T.T., Fleury, R.: Electromagnetic fields in a time-varying medium: Exceptional points and operator symmetries. IEEE Trans. Antennas Propagation (2020)
[27] Lee-Thorp, JP; Weinstein, MI; Zhu, Y., Elliptic operators with honeycomb symmetry: Dirac points, edge states and applications to photonic graphene, Arch. Ration. Mech. Anal., 232, 1, 1-63 (2019) · Zbl 1410.78024 · doi:10.1007/s00205-018-1315-4
[28] Li, X.; Meng, Y.; Wu, X.; Yan, S.; Huang, Y.; Wang, S.; Wen, W., Su-Schrieffer-Heeger model inspired acoustic interface states and edge states, Appl. Phys. Lett., 113, 20 (2018) · doi:10.1063/1.5051523
[29] Lin, J., Zhang, H.: Mathematical theory for topological photonic materials in one dimension. arXiv preprint arXiv:2101.05966 (2021)
[30] Ma, G.; Xiao, M.; Chan, CT, Topological phases in acoustic and mechanical systems, Nat. Rev. Phys., 1, 4, 281-294 (2019) · doi:10.1038/s42254-019-0030-x
[31] Peng, Y.; Qin, C.; Zhao, D., Experimental demonstration of anomalous Floquet topological insulator for sound, Nat. Commun., 7, 13368 (2016) · doi:10.1038/ncomms13368
[32] Pocock, SR; Xiao, X.; Huidobro, PA; Giannini, V., Topological plasmonic chain with retardation and radiative effects, ACS Photonics, 5, 6, 2271-2279 (2018) · doi:10.1021/acsphotonics.8b00117
[33] Prodan, E.; Schulz-Baldes, H., Non-commutative odd Chern numbers and topological phases of disordered chiral systems, J. Funct. Anal., 271, 5, 1150-1176 (2016) · Zbl 1344.82055 · doi:10.1016/j.jfa.2016.06.001
[34] Rechtsman, MC; Zeuner, JM; Plotnik, Y.; Lumer, Y.; Podolsky, D.; Dreisow, F.; Nolte, S.; Segev, M.; Szameit, A., Photonic Floquet topological insulators, Nature, 496, 7444, 196-200 (2013) · doi:10.1038/nature12066
[35] Ryu, S.; Schnyder, AP; Furusaki, A.; Ludwig, AWW, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys., 12, 6 (2010) · doi:10.1088/1367-2630/12/6/065010
[36] Slobozhanyuk, AP; Poddubny, AN; Miroshnichenko, AE; Belov, PA; Kivshar, YS, Subwavelength topological edge states in optically resonant dielectric structures, Phys. Rev. Lett., 114 (2015) · doi:10.1103/PhysRevLett.114.123901
[37] Su, WP; Schrieffer, JR; Heeger, AJ, Solitons in polyacetylene, Phys. Rev. Lett., 42, 1698-1701 (1979) · doi:10.1103/PhysRevLett.42.1698
[38] Wang, L.; Zhang, R-Y; Hou, B.; Huang, Y.; Li, S.; Wen, W., Subwavelength topological edge states based on localized spoof surface plasmonic metaparticle arrays, Opt. Express, 27, 10, 14407-14422 (2019) · doi:10.1364/OE.27.014407
[39] Wang, Y-T; Tsai, Y-W; Wenlong, G., Floquet topological photonic crystals with temporally modulated media, Opt. Express, 28, 14, 21268 (2020) · doi:10.1364/OE.395504
[40] Wilson, J.; Santosa, F.; Martin, P., Temporally manipulated plasmons on graphene, SIAM J. Appl. Math., 79, 3, 1051-1074 (2019) · Zbl 1419.78006 · doi:10.1137/18M1226889
[41] Wilson, J.; Santosa, F.; Min, M.; Low, T., Temporal control of graphene plasmons, Phys. Rev. B, 98, 8 (2018) · doi:10.1103/PhysRevB.98.081411
[42] Yves, S., Fleury, R., Berthelot, T., Fink, M., Lemoult, F., Lerosey, G.: Crystalline metamaterials for topological properties at subwavelength scales. Nat. Commun. 8, 16023 EP (2017)
[43] Yves, S.; Fleury, R.; Lemoult, F.; Fink, M.; Lerosey, G., Topological acoustic polaritons: robust sound manipulation at the subwavelength scale, New J. Phys., 19, 7 (2017) · doi:10.1088/1367-2630/aa66f8
[44] Yves, S.; Lemoult, F.; Fink, M.; Lerosey, G., Crystalline soda can metamaterial exhibiting graphene-like dispersion at subwavelength scale, Sci. Rep., 7, 1, 15359 (2017) · doi:10.1038/s41598-017-15335-3
[45] Zak, J., Berry’s phase for energy bands in solids, Phys. Rev. Lett., 62, 2747-2750 (1989) · doi:10.1103/PhysRevLett.62.2747
[46] Zhao, D.; Xiao, M.; Ling, C.; Chan, C.; Fung, KH, Topological interface modes in local resonant acoustic systems, Phys. Rev. B, 98, 1 (2018) · doi:10.1103/PhysRevB.98.014110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.