×

Asymmetric random walks with bias generated by discrete-time counting processes. (English) Zbl 1535.60077

Summary: We introduce a new class of asymmetric random walks on the one-dimensional infinite lattice. In this walk the direction of the jumps (positive or negative) is determined by a discrete-time renewal process which is independent of the jumps. We call this discrete-time counting process the ‘generator process’ of the walk. We refer the so defined walk to as ‘asymmetric discrete-time random walk’ (ADTRW). We highlight connections of the waiting time density generating functions with Bell polynomials. We derive the discrete-time renewal equations governing the time-evolution of the ADTRW and analyze recurrent/transient features of simple ADTRWs (walks with unit jumps in both directions). We explore the connections of the recurrence/transience with the bias: Transient simple ADTRWs are biased and vice verse. Recurrent simple ADTRWs are either unbiased in the large time limit or ‘strictly unbiased’ at all times with symmetric Bernoulli generator process. In this analysis we highlight the connections of bias and light-tailed/fat-tailed features of the waiting time density in the generator process. As a prototypical example with fat-tailed feature we consider the ADTRW with Sibuya distributed waiting times.
We also introduce time-changed versions: We subordinate the ADTRW to a continuous-time renewal process which is independent from the generator process and the jumps to define the new class of ‘asymmetric continuous-time random walk’ (ACTRW). This new class – apart of some special cases – is not a Montroll-Weiss continuous-time random walk (CTRW). ADTRW and ACTRW models may open large interdisciplinary fields in anomalous transport, birth-death models and others.

MSC:

60G50 Sums of independent random variables; random walks
60K15 Markov renewal processes, semi-Markov processes

Software:

mlrnd

References:

[1] Pascal, B., Traité du triangle arithmétique, 1654
[2] Spitzer, F., Principles of random walk, 1976, Springer-Verlag: Springer-Verlag New York · Zbl 0119.34304
[3] Doob, J. L., Stochastic processes, 1953, Wiley: Wiley New York · Zbl 0053.26802
[4] Feller, W., An introduction to probability theory and its applications. vol. II., 1971, John Wiley & Sons Inc.: John Wiley & Sons Inc. New York · Zbl 0138.10207
[5] Hajek, B., Gambler’s ruin: A random walk on the simplex, (Cover, T. M.; Gopinath, B., Paragraph 6.3 in open problems in communications and computation, 1987, Springer-Verlag: Springer-Verlag New York), 204-207
[6] Meerschaert, M. M.; Straka, P., Inverse stable subordinators, Math Model Nat Phenom, 8, 2, 1-16, 2013 · Zbl 1274.60153
[7] Kelly, J. F.; Meerschaert, M. M., The fractional advection-dispersion equation for contaminant transport, (Tarasov, V. E., Handbook of fractional calculus with applications, vol. 5, 2019, De Gruyter: De Gruyter Berlin), 129C149 · Zbl 1410.26006
[8] Wang, W.; Barkai, E., Fractional advection-diffusion-asymmetry equation, Phys Rev Lett, 125, Article 240606 pp., 2020
[9] Angstmann, C. N.; Henry, B. I.; Jacobs, B. A.; McGann, A. V., A time-fractional generalised advection equation from a stochastic process, Chaos Solitons Fractals, 102, 175-183, 2017 · Zbl 1374.60081
[10] Hou, R.; Cherstvy, A. G.; Metzler, R.; Akimotoc, T., Biased continuous-time random walks for ordinary and equilibrium cases: Facilitation of diffusion, ergodicity breaking and ageing, Phys Chem, 20, 20827-20848, 2018
[11] Padash, A.; Chechkin, A. V.; Dybiec, B.; Pavlyukevich, I.; Shokri, B.; Metzler, R., First-passage properties of asymmetric Lévy flights, J Phys A, 52, Article 454004 pp., 2019 · Zbl 1509.60106
[12] Montroll, E. W.; Weiss, G. H., Random walks on lattices II, J Math Phys, 6, 2, 167-181, 1965 · Zbl 1342.60067
[13] Gorenflo, R.; Mainardi, F., Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: Mathematical aspects, (Klages, R.; Radons, G.; Sokolov, I. M., Anomalous transport: Foundations and applications, 2008, Wiley-VCH: Wiley-VCH Weinheim, Germany)
[14] Gorenflo R. Mittag-Leffler waiting time, power laws, rarefaction, continuous time random walk, diffusion limit. In: Proceedings of the national workshop on fractional calculus and statistical distributions, Kerala, India; 2009. p. 1-22.
[15] Mainardi, F.; Raberto, M.; Gorenflo, R.; Scalas, E., Fractional calculus and continuous-time finance II: The waiting-time distribution, Physica A, 287, 3-4, 468-481, 2000
[16] Scalas, E.; Gorenflo, R.; Mainardi, F., Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation, Phys Rev E, 69, 1, Article 011107 pp., 2004
[17] Mainardi, F.; Gorenflo, R.; Scalas, E., A fractional generalization of the Poisson processes, Vietn J Math, 32, SI, 53-64, 2004 · Zbl 1087.60064
[18] Fulger, D.; Scalas, E.; Germano, G., Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys Rev E, 77, 2, Article 021122 pp., 2008
[19] Laskin, N., Fractional Poisson process, Commun Nonlinear Sci Numer Simul, 8, 3-4, 201-213, 2003 · Zbl 1025.35029
[20] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion : A fractional dynamics approach, Phys Rep, 339, 1-77, 2000 · Zbl 0984.82032
[21] Metzler, R.; Klafter, J., The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J Phys A: Math Gen, 37, R161-R208, 2004 · Zbl 1075.82018
[22] Berkowits, B.; Cortis, A.; Dentz, M.; Scher, H., Modeling non-Fickian transport in geological formation as a continuous time random walk, Rev Geophys, 44, 2, 2006
[23] Kutner, R.; Masoliver, J., The continuous time random walk, still trendy: Fifty-year history, state of art and outlook, Eur Phys J B, 90, 50, 2017
[24] Meerschaert, M. M.; Sikorski, A., (Stochastic models for fractional calculus. Stochastic models for fractional calculus, De gruyter studies in mathematics, vol. 43, 2019, Walter de Gruyter: Walter de Gruyter Berlin-Boston) · Zbl 1490.60004
[25] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives: Theory and applications, 1993, Gordon and Breach: Gordon and Breach London · Zbl 0818.26003
[26] Oldham, K. B.; Spanier, J., The fractional calculus, 1974, Academic Press: Academic Press New York-London · Zbl 0292.26011
[27] Gorenflo, R.; Mainardi, F., Fractional calculus and stable probability distributions, Arch Mech, 50, 3, 377-388, 1998 · Zbl 0934.35008
[28] Kochubei, A. N., General fractional calculus, evolution equations, and renewal processes, (Integral equations and operator theory, vol. 71, 2011), 583-600 · Zbl 1250.26006
[29] Giusti, A.; Colombaro, I.; Garra, R.; Garrappa, R.; Polito, F.; Popolizio, M., A practical guide to Prabhakar fractional calculus, Fract Calc Appl Anal, 23, 1, 9-54, 2020 · Zbl 1437.33019
[30] Giusti, A., General fractional calculus and Prabhakar theory, Commun Nonlinear Sci Numer Simul, 83, Article 105114 pp., 2020 · Zbl 1451.26009
[31] Luchko, Y., Operational calculus for the general fractional derivatives with the Sonine kernels, Fract Calc Appl Anal, 24, 2, 338-375, 2021 · Zbl 1498.26013
[32] Diethelm, K.; Garrappa, R.; Giusti, A.; Stynes, M., Why fractional derivatives with nonsingular kernels should not be used, Fract Calc Appl Anal, 23, 3, 610-634, 2020 · Zbl 1474.26020
[33] Michelitsch, T. M.; Riascos, A. P., Generalized fractional Poisson process and related stochastic dynamics, Fract Calc Appl Anal, 23, 3, 656-693, 2020 · Zbl 1474.60202
[34] Michelitsch, T. M.; Riascos, A. P., Continuous time random walk and diffusion with generalized fractional Poisson process, Physica A, 545, Article 123294 pp., 2020
[35] Lévy, P., Processus semi-Markovien, Proc Int Congr Math, 3, 416-426, 1956 · Zbl 0073.34705
[36] Smith, W. L., Regenerative stochastic processes, Proc R Soc Lond Ser A Math Phys Eng Sci, 232, 6-31, 1955 · Zbl 0067.36301
[37] Takács, L., On sojourn time problem, Teor Veroyatn Primen, 3, 61-69, 1958
[38] Pyke, R., Markov renewal processes with finitely many states, Ann Math Stat, 32, 1243-1259, 1961 · Zbl 0201.49901
[39] Feller, W., On semi-Markov processes, Proc Natl Acad Sci USA, 51, 653-659, 1964 · Zbl 0119.34602
[40] Pachon, A.; Polito, F.; Ricciuti, C., On discrete-time semi-Markov processes, Dis Cont Dyn Sys Ser B, 26, 3, 1499-1529, 2021 · Zbl 1470.60241
[41] Michelitsch, T. M.; Polito, F.; Riascos, A. P., On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics, Physica A, 565, Article 125541 pp., 2021 · Zbl 07464377
[42] Michelitsch, T. M.; Polito, F.; Riascos, A. P., Biased continuous-time random walks with Mittag-Leffler jumps, Fractal Fract, 4, 4, 51, 2020
[43] Riascos, A. P.; Michelitsch, T. M.; Pizarro-Medina, A., Non-local biased random walks and fractional transport on directed networks, Phys Rev E, 102, Article 022142 pp., 2020
[44] Pólya, G., Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz, Math Ann, 84, 149-160, 1921 · JFM 48.0603.01
[45] Redner, S., A guide to first passage processes, 2001, Cambridge University Press · Zbl 0980.60006
[46] Lawler, G. F.; Limic, V., Random walk: A modern introduction, 2010, Cambridge University Press · Zbl 1210.60002
[47] Michelitsch, T.; Riascos, A. P.; Collet, B.; Nowakowski, A.; Nicolleau, F., Fractional dynamics on networks and lattices, 2019, ISTE-Wiley
[48] Karlin, S.; McGregor, J., The classification of birth and death processes, Trans Am Math Soc, 86, 2, 366-400, 1957 · Zbl 0091.13802
[49] Bell, E. T., Partition polynomials, Ann Math, 29, 1/4, 38-46, 1927 · JFM 53.0132.02
[50] Bell, E. T., Exponential polynomials, Ann Math, 35, 2, 258-277, 1934 · JFM 60.0295.01
[51] Johnson, W. P., The curious history of Faà di Bruno’s formula, Am Math Mon, 109, 217-234, 2002 · Zbl 1024.01010
[52] Cvijovic, D., New identities for the partial bell polynomials, Appl Math Lett, 24, 9, 1544-1547, 2011 · Zbl 1225.05027
[53] Kruchinin, V. V., Derivation of bell polynomials of the second kind, 2011, arXiv:1104.5065 [math.CO]
[54] Michelitsch, T. M.; Collet, B. A.; Riascos, A. P.; Nowakowski, A. F.; Nicolleau, F. C.G. A., Recurrence of random walks with long-range steps generated by fractional Laplacian matrices on regular networks and simple cubic lattices, J Phys A, 50, Article 505004 pp., 2017 · Zbl 1357.82059
[55] Michelitsch, T.; Collet, B.; Riascos, A. P.; Nowakowski, A.; Nicolleau, F., On recurrence and transience of fractional random walks in lattices, (others, H. Altenbach, Chapter 29, Generalized models and non-classical approaches in complex materials 1, advanced structured materials, vol. 89, 2018, Springer Verlag: Springer Verlag Cham)
[56] Pagnini, G.; Vitali, S., Should I stay or should I go? Zero-size jumps in random walks for Lévy flights, Fract Calc Appl Anal, 24, 1, 137-167, 2021 · Zbl 1474.60124
[57] Noether, E., Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse, 235-257, 1918 · JFM 46.0770.01
[58] Orsingher, E.; Polito, F.; Compositions, A. P., Random sums and continued random fractions of Poisson and fractional Poisson processes, J Stat Phys, 148, 233-249, 2012 · Zbl 1251.60041
[59] Orsingher, E.; Polito, F., The space-fractional Poisson process, Statist Probab Lett, 82, 852-858, 2012 · Zbl 1270.60048
[60] Harris, T. E., On the theory of branching processes, 1963, Springer Verlag: Springer Verlag Berlin, Göttingen, Heidelberg · Zbl 0117.13002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.