×

A time-fractional generalised advection equation from a stochastic process. (English) Zbl 1374.60081

Summary: A generalised advection equation with a time fractional derivative is derived from a continuous time random walk on a one-dimensional lattice, with power law distributed waiting times. We consider walks governed by a two-sided jump density and walks governed by a one-sided jump density. With the two-sided density, the particle can jump in both directions on the lattice, whereas with the one-sided density the particle cannot jump in one of these directions. The master equations describing the evolution of the probability density for the position of the particle are different for each of the jump densities. However in an advective limit both master equations limit to a common generalized advection equation with time fractional derivatives.
We have also considered the stochastic processes in a discrete time setting, again arriving at different discrete time master equations for each of the jump densities. The discrete time master equations can be used to provide different numerical approximations to the solutions of the fractional generalized advection equation. The approximations allow us to compare the efficacy of the one-sided and two-sided densities.

MSC:

60G50 Sums of independent random variables; random walks
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Montroll, E. W.; Weiss, G. H., Random walks on lattices II, J Math Phys, 6, 2, 167-181 (1965) · Zbl 1342.60067
[2] Scher, H.; Lax, M., Stochastic transport in a disordered solid. I. theory, Phys Rev B, 7, 4491-4502 (1973)
[3] Angstmann, C. N.; Donnelly, I. C.; Henry, B. I.; Nichols, J. A., A discrete time random walk model for anomalous diffusion, J Comput Phys, 293, 53-69 (2015) · Zbl 1349.60128
[4] Angstmann, C. N.; Donnelly, I. C.; Henry, B. I.; Jacobs, B.; Langlands, T. A.; Nichols, J. A., From stochastic processes to numerical methods: a new scheme for solving reaction subdiffusion fractional partial differential equations, J Comput Phys, 307, 508-534 (2016) · Zbl 1352.65404
[6] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys Rev E, 61, 1, 132-138 (2000)
[7] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys Rep, 339, 1-77 (2000) · Zbl 0984.82032
[8] Sokolov, I. M.; Klafter, J., Field-induced dispersion in subdiffusion, Phys Rev Lett, 97, 14, 140602 (2006)
[9] Henry, B. I.; Langlands, T. A.M.; Straka, P., Fractional Fokker-Planck equations for subdiffusion with space- and time-dependent forces, Phys Rev Lett, 105, 17, 170602 (2010)
[10] Angstmann, C. N.; Donnelly, I. C.; Henry, B. I.; Langlands, T. A.M.; Straka, P., Generalized continuous time random walks, master equations, and fractional Fokker-Planck equations, SIAM J Appl Math, 75, 4, 1445-1468 (2015) · Zbl 1327.35370
[11] Henry, B. I.; Langlands, T. A.M.; Wearne, S. L., Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations, Phys Rev E, 74, 3, 031116 (2006)
[12] Fedotov, S., Non-Markovian random walks and nonlinear reactions: subdiffusion and propagating fronts, Phys Rev E, 81, 1, 011117 (2010)
[13] Yuste, S. B.; Abad, E.; Lindenberg, K., Reaction-subdiffusion model of morphogen gradient formation, Phys Rev E, 82, 6, 061123 (2010)
[14] Angstmann, C. N.; Donnelly, I. C.; Henry, B. I., Continuous time random walks with reactions, forcing, and trapping, Math Model Nat Phenom, 8, 2, 17-27 (2013) · Zbl 1320.60135
[15] Henry, B. I.; Langlands, T. A.M.; Wearne, S. L., Fractional cable models for spiny neuronal dendrites, Phys Rev Lett, 100, 12, 128103 (2008)
[16] Langlands, T. A.M.; Henry, B. I.; Wearne, S. L., Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J Math Biol, 59, 6, 761-808 (2009) · Zbl 1232.92037
[17] Langlands, T. A.M.; Henry, B. I.; Wearne, S. L., Fractional cable equation models for anomalous electrodiffusion in nerve cells: finite domain solutions, SIAM J Appl Math, 71, 4, 1168-1203 (2011) · Zbl 1232.92038
[18] Meerschaert, M. M.; Benson, D. A.; Scheffler, H.; Becker-Kern, P., Governing equations and solutions of anomalous random walk limits, Phys Rev E, 66, 6, 060102 (2002)
[19] Angstmann, C. N.; Henry, B. I.; McGann, A. V., A fractional order recovery SIR model from a stochastic process, B Math Biol, 78, 3, 468-499 (2016) · Zbl 1343.92457
[20] Angstmann, C. N.; Henry, B. I.; McGann, A. V., A fractional-order infectivity SIR model, Phys A, 452, 86-93 (2016) · Zbl 1343.92457
[21] Angstmann, C. N.; Erickson, A. M.; Henry, B. I.; McGann, A. V.; Murray, J. M.; Nichols, J. A., Fractional order compartment models, SIAM J Appl Math, 77, 2, 430-446 (2017) · Zbl 1368.34059
[22] Benson, D. A., The fractional advection-dispersion equation: development and application. Ph.D. thesis (1998), University of Nevada Reno
[23] Meerschaert, M. M.; Benson, D. A.; Bäumer, B., Multidimensional advection and fractional dispersion, Phys Rev E, 59, 5026-5028 (1999)
[24] Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M., The fractional-order governing equation of Lévy motion, Water Resour Res, 36, 6, 1413-1423 (2000)
[25] Cartea, A.; del-Castillo-Negrete, D., Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys Rev E, 76, 041105 (2007)
[26] del-Castillo-Negrete, D., Non-diffusive, non-local transport in fluids and plasmas, Nonlin Processes Geophys, 17, 795-807 (2010)
[27] Meerschaert, M. M.; Sikorskii, A., Stochastic models for fractional calculus (2012), Walter de Gruyter, Berlin · Zbl 1247.60003
[28] Angstmann, C. N.; Donnelly, I. C.; Henry, B. I., Pattern formation on networks with reactions: a continuous-time random-walk approach, Phys Rev E, 87, 032804 (2013) · Zbl 1320.60135
[29] Angstmann, C. N.; Donnelly, I. C.; Henry, B. I.; Langlands, T. A.M., Continuous-time random walks on networks with vertex-and time-dependent forcing, Phys Rev E, 88, 2, 022811 (2013)
[30] Michelitsch, T.; Collet, B.; Riascos, A.; Nowakowski, A.; Nicolleau, F., A fractional generalization of the classical lattice dynamics approach, Chaos, Solitons Fractals, 92, 43-50 (2016) · Zbl 1372.39021
[31] Michelitsch, T.; Collet, B.; Riascos, A. P.; Nowakowski, A.; Nicolleau, F., Fractional random walk lattice dynamics, J Phys A, 50, 5, 055003 (2017) · Zbl 1357.82059
[32] Fedotov, S.; Stage, H., Anomalous metapopulation dynamics on scale-free networks, Phys Rev Lett, 118, 9, 098301 (2017)
[33] Angstmann, C. N.; Henry, B. I.; Ortega-Piwonka, I., Generalized master equations and fractional Fokker-Planck equations from continuous time random walks with arbitrary initial conditions, Comput Math Appl, 73, 6, 1315-1324 (2017) · Zbl 1412.35333
[34] Hilfer, R.; Anton, L., Fractional master equations and fractal time random walks, Phys Rev E, 51, 2, R848-R851 (1995)
[35] Podlubny, I., Fractional differential equations (1998), Academic Press, London · Zbl 0922.45001
[36] Sibuya, M., Generalized hypergeometric, digamma and trigamma distributions, Ann Inst Statist Math, 3, 373-390 (1979) · Zbl 0448.62008
[37] Haubold, H.; Mathai, A.; Saxena, R., Mittag-Leffler functions and their applications, J Appl Math, 2011, 298628 (2011) · Zbl 1218.33021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.