×

Fractional random walk lattice dynamics. (English) Zbl 1357.82059

Summary: We analyze time-discrete and time-continuous ‘fractional’ random walks on undirected regular networks with special focus on cubic periodic lattices in \(n=1,2,3,\ldots\) dimensions. The fractional random walk dynamics is governed by a master equation involving fractional powers of Laplacian matrices \(L\frac\alpha2\) where \(\alpha=2\) recovers the normal walk. First we demonstrate that the interval \(0<\alpha\leqslant2\) is admissible for the fractional random walk. We derive analytical expressions for the transition matrix of the fractional random walk and closely related the average return probabilities. We further obtain the fundamental matrix \(Z^{(\alpha)}\), and the mean relaxation time (Kemeny constant) for the fractional random walk. The representation for the fundamental matrix \(Z^{(\alpha)}\) relates fractional random walks with normal random walks. We show that the matrix elements of the transition matrix of the fractional random walk exihibit for large cubic \(n\)-dimensional lattices a power law decay of an \(n\)-dimensional infinite space Riesz fractional derivative type indicating emergence of Lévy flights. As a further footprint of Lévy flights in the \(n\)-dimensional space, the transition matrix and return probabilities of the fractional random walk are dominated for large times \(t\) by slowly relaxing long-wave modes leading to a characteristic \(t^{-\frac{n}{\alpha}}\) -decay. It can be concluded that, due to long range moves of fractional random walk, a small world property is emerging increasing the efficiency to explore the lattice when instead of a normal random walk a fractional random walk is chosen.

MSC:

82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics
82C70 Transport processes in time-dependent statistical mechanics
82D25 Statistical mechanics of crystals

References:

[1] Abramowitz M and Stegun A 1972 Handbook of mathematical function, national Bureau of standards Appl. Math. Ser.55 p 376 · Zbl 0543.33001
[2] Barkai E 2001 Fractional Fokker-Planck equation, solution, and application Phys. Rev. E 63 046118 · doi:10.1103/PhysRevE.63.046118
[3] Bénichou O, Loverdo C, Moreau M and Voituriez R 2011 Intermittent search strategies Rev. Mod. Phys.83 81-28 · doi:10.1103/RevModPhys.83.81
[4] Chechkin A, Metzler R, Klafter J and Gonchar V 2008 Introduction to the theory of Lévy flights Anomalous Transport: Foundations and Applications ed R Klages et al (Weinheim: Wiley) · doi:10.1002/9783527622979.ch5
[5] Chechkin A, Gonchar V Y, Klafter J and Metzler R 2006 Fundamentals of Lévy flight processes Adv. Chem. Phys.133 439-96 · doi:10.1002/0470037148.ch9
[6] Metzler R, Chechkin A and Klafter J 2009 Lévy Statistics, Anomalous Statistics, Anomalous Transport: Lévy Flights, Subdiffusion(Encyclopaedia of Complexity and System Science) (Berlin: Springer)
[7] Doyle P G and Snell J L 1984 Random Walks and Electric Networks(Carus Mathematical Monographs vol 22) (Washington, DC: Mathematical Association of America) · Zbl 0583.60065
[8] Hilfer R 2008 Threefold introduction to fractional derivatives Anomalous Transport: Foundations and Applications ed R Klages et al (Weinheim: Wiley) p 17 · doi:10.1002/9783527622979.ch2
[9] Dorogovtsev S N and Goltsev A V 2008 Critical phenomena in complex networks Rev. Mod. Phys.80 1275-335 · doi:10.1103/RevModPhys.80.1275
[10] Kemeny J G and Snell J L 1976 Finite Markov Chains (New York: Springer)
[11] Laskin N 2002 Fractional Schrödinger equation Phys. Rev. E 66 056108 · doi:10.1103/PhysRevE.66.056108
[12] Laskin N and Zaslavsky A 2006 Nonlinear fractional dynamics on a lattice with long-range interactions Physica A 368 38-45 · doi:10.1016/j.physa.2006.02.027
[13] Norris J R 1998 (Markov Chains vol 2016) (Cambridge: Cambridge University Press) · Zbl 0938.60058
[14] Metzler R and Klafter J 2000 The random walk’s guide to anomalous diffusion: a fractional dynamics approach Phys. Rep.339 1-77 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[15] Metzler R and Klafter J 2004 The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A: Math. Gen.37 R161208 · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[16] Michelitsch T M, Collet B, Nowakowski A F and Nicolleau F C G A 2015 Fractional Laplacian matrix on the finite periodic linear chain and its periodic Riesz fractional derivative continuum limit J. Phys. A: Math. Theor.48 295202 · Zbl 1330.82013 · doi:10.1088/1751-8113/48/29/295202
[17] Michelitsch T M, Collet B, Nowakowski A F and Nicolleau F C G A 2016 Lattice fractional Laplacian and its continuum limit kernel on the finite cyclic chain Chaos Solitons Fractals82 38-47 · Zbl 1355.35051 · doi:10.1016/j.chaos.2015.10.035
[18] Michelitsch T M, Collet B, Riascos A P, Nowakowski A F and Nicolleau F C G A 2016 Fractional lattice dynamics: nonlocal constitutive behavior generated by power law matrix functions and their fractional continuum limit kernels Int. Summer School-Conf. Advanced Problems in Mechanics www.apm-conf.spb.ru/
[19] Michelitsch T, Collet B and Wang X 2014 Nonlocal constitutive laws generated by matrix functions: lattice dynamics models and their continuum limits Int. J. Eng. Sci.80 106123 · Zbl 1423.74085 · doi:10.1016/j.ijengsci.2014.02.029
[20] Michelitsch T M, Maugin G A, Nowakowski A F, Nicolleau F C G A and Rahman M 2013 The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion Fractional Calclulus Appl. Anal.16 827-59 · Zbl 1314.35209
[21] Michelitsch T M, Derogar S and Rahman M 2014 A regularized representation of the fractional Laplacian in n dimensions and its relation to Weierstrass-Mandelbrot-type fractal functions IMA J. Appl. Math.79 753777 · Zbl 1305.35152 · doi:10.1093/imamat/hxu018
[22] Newmann M E J 2011 Complex systems: a survey Am. J. Phys.79 800 · doi:10.1119/1.3590372
[23] Noh J D and Rieger H 2004 Random walks on complex networks Phys. Rev. Lett.92 118701 · doi:10.1103/PhysRevLett.92.118701
[24] Ortigueira M D 2006 Riesz potential operators and inverses via fractional centered derivatives Int. J. Math. Math. Sci.48391 112
[25] Ortigueira M D, Coito F J V and Trujillo J J 2015 Discrete-time differential systems Signal Process.107 198-217 · doi:10.1016/j.sigpro.2014.03.004
[26] Ortigueira M D 2011 Fractional Calculus for Scientists and Engineers (New York: Springer) · Zbl 1251.26005 · doi:10.1007/978-94-007-0747-4
[27] Redner S 2001 A Guide to First Passage Processes (New York: Cambridge University Press) · Zbl 1128.60002 · doi:10.1017/CBO9780511606014
[28] Riascos A P and Mateos J L 2012 Long-range navigation on complex networks using Lévy random walks Phys. Rev. E 86 056110 · doi:10.1103/PhysRevE.86.056110
[29] Riascos A P and Mateos J L 2014 Fractional dynamics on networks: emergence of anomalous diffusion and Lévy flights Phys. Rev. E 90 032809 · doi:10.1103/PhysRevE.90.032809
[30] Riascos A P and Mateos J L 2015 Fractional diffusion on circulant networks: emergence of a dynamical small world J. Stat. Mech. P07015 · Zbl 1456.82837 · doi:10.1088/1742-5468/2015/07/P07015
[31] Riascos A P and Mateos J L 2015 Fractional quantum mechanics on networks: long-range dynamics and quantum transport Phys. Rev. E 92 052814 · doi:10.1103/PhysRevE.92.052814
[32] Samko S, Kilbas A and Marichev O 1993 Fractional Integrals and Derivatives: Theory and Applications (London: Gordon and Breach) · Zbl 0818.26003
[33] Samko S 2003 Fractional Weyl-Riesz integrodifferentiation of periodic functions of two variables via the periodization of the Riesz Kernel Appl. Anal.82 269-99 · Zbl 1033.26011 · doi:10.1080/0003681031000094889
[34] Podlubny I 1999 Fractional Differential Equations(Mathematics in Science and Engineering vol 198) (San Diego: Academic) · Zbl 0924.34008
[35] Tarasov V E 2015 Lattice fractional calculus Appl. Math. Comput.257 1233 · Zbl 1338.82037 · doi:10.1016/j.amc.2014.11.033
[36] Watts D J and Strogatz S H 1998 Nature393 440 · Zbl 1368.05139 · doi:10.1038/30918
[37] Zhang Z, Julaiti A, Hou B, Zhang H and Chen G 2011 Mean first passage time for random walks on undirected networks Eur. Phys. J. B 84 691 · doi:10.1140/epjb/e2011-20834-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.