×

A vertex-centered and positivity-preserving scheme for anisotropic diffusion equations on general polyhedral meshes. (English) Zbl 1407.65251

Summary: We propose a new nonlinear positivity-preserving finite volume scheme for anisotropic diffusion problems on general polyhedral meshes with possibly nonplanar faces. The scheme is a vertex-centered one where the edge-centered, face-centered, and cell-centered unknowns are treated as auxiliary ones that can be computed by simple second-order and positivity-preserving interpolation algorithms. Different from most existing positivity-preserving schemes, the presented scheme is based on a special nonlinear two-point flux approximation that has a fixed stencil and does not require the convex decomposition of the co-normal. More interesting is that the flux discretization is actually performed on a fixed tetrahedral subcell of the primary cell, which makes the scheme very easy to be implemented on polyhedral meshes with star-shaped cells. Moreover, it is suitable for polyhedral meshes with nonplanar faces, and it does not suffer the so-called numerical heat-barrier issue. The truncation error is analyzed rigorously, while the Picard method and its Anderson acceleration are used for the solution of the resulting nonlinear system. Numerical experiments are also provided to demonstrate the second-order accuracy and well positivity of the numerical solution for heterogeneous and anisotropic diffusion problems on severely distorted grids.

MSC:

65N06 Finite difference methods for boundary value problems involving PDEs

Software:

ICF3D; TRHD
Full Text: DOI

References:

[1] Keilegavlen E, Nordbotten JM, Aavatsmark I. Sufficient criteria are necessary for monotone control volume methods. Appl Math Lett. 2009;22(8):1178‐1180. · Zbl 1173.76409
[2] Nordbotten JM, Aavatsmark I, Eigestad GT. Monotonicity of control volume methods. Numer Math. 2007;106:255‐288. · Zbl 1215.76090
[3] Potier CL. Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés. C R Acad Sci Paris, Ser I. 2005;341:787‐792. · Zbl 1081.65086
[4] Lipnikov K, Shashkov M, Svyatskiy D, Vassilevski Y. Monotone finite volume schemes for diffusion equations on unstructured triangular and shape‐regular polygonal meshes. J Comput Phys. 2007;227:492‐512. · Zbl 1130.65113
[5] Yuan G, Sheng Z. Monotone finite volume schemes for diffusion equations on polygonal meshes. J Comput Phys. 2008;227:6288‐6312. · Zbl 1147.65069
[6] Blanc X, Labourasse E. A positive scheme for diffusion problems on deformed meshes. Z Angew Math Mech. 2016;96:660‐680. · Zbl 1529.65029
[7] Sijoy CD, Chaturvedi S. TRHD: three‐temperature radiation‐hydrodynamics code with an implicit non‐equilibrium radiation transport using a cell‐centered monotonic finite volume scheme on unstructured‐grids. Comput Phys Commun. 2015;190:98‐119. · Zbl 1344.76057
[8] Schneider M, Flemisch B, Helmig R. Monotone nonlinear finite‐volume method for nonisothermal two‐phase two‐component flow in porous media. Int J Numer Meth Fluids. 2017;84(6):352‐381.
[9] Lipnikov K, Svyatskiy D, Vassilevski Y. Interpolation‐free monotone finite volume method for diffusion equations on polygonal meshes. J Comput Phys. 2009;228:703‐716. · Zbl 1158.65083
[10] Camier J, Hermeline F. A monotone nonlinear finite volume method for approximating diffusion operators on general meshes. Int J Numer Meth Eng. 2016;107:496‐519. · Zbl 1352.65428
[11] Zhang X, Su S, Wu J. A vertex‐centered and positivity‐preserving scheme for anisotropic diffusion problems on arbitrary polygonal grids. J Comput Phys. 2017;344:419‐436. · Zbl 1380.65337
[12] Gao Z, Wu J. A second‐order positivity‐preserving finite volume scheme for diffusion equations on general meshes. SIAM J Sci Comput. 2015;37:420‐438. · Zbl 1315.65077
[13] Sheng Z, Yuan G. The finite volume scheme preserving extremum principle for diffusion equations on polygonal meshes. J Comput Phys. 2011;230:2588‐2604. · Zbl 1218.65120
[14] Gao Z, Wu J. A small stencil and extremum‐preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes. J Comput Phys. 2013;250:308‐331. · Zbl 1349.65663
[15] Cancès C, Cathala M, Potier CL. Monotone corrections for generic cell‐centered finite volume approximations of anisotropic diffusion equations. Numer Math. 2013;125:387‐417. · Zbl 1281.65139
[16] Barrenechea GR, John V, Knobloch P. An algebraic flux correction scheme satisfying the discrete maximum principle and linearity preservation on general meshes. Math Models Methods Appl Sci. 2017;27:525‐548. · Zbl 1360.65275
[17] Terekhov KM, Mallison BT, Tchelepi HA. Cell‐centered nonlinear finite‐volume methods for the heterogeneous anisotropic diffusion problem. J Comput Phys. 2017;330:245‐267. · Zbl 1380.65335
[18] Vidović D, Dotlić M, Dimkić M, Pus̆ić M, Pokorni B. Convex combinations for diffusion schemes. J Comput Phys. 2013;246:11‐27. · Zbl 1349.65584
[19] Kapyrin IV. A family of monotone methods for the numerical solution of three‐dimensional diffusion problems on unstructured tetrahedral meshes. Doklady Math. 2007;76(2):734‐738. · Zbl 1416.65402
[20] Danilov AA, Vassilevski Y. A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ J Numer Anal Math Modelling. 2009;24:207‐227. · Zbl 1166.65394
[21] Danilov A, Vassilevski Y. Benchmark 3D: a monotone nonlinear finite volume method for diffusion equations on polyhedral meshes. In: Fořt J, Fürst J, Halama J, Herbin R, Hubert F, eds. Finite Volumes for Complex Applications VI Problems & Perspectives. Berlin, Heidelberg: Springer; 2011:993‐1003. · Zbl 1246.76077
[22] Nikitin K, Vassilevski Y. A monotone nonlinear finite volume method for advection-diffusion equations on unstructured polyhedral meshes in 3D. Russ J Numer Anal Math Modelling. 2010;25:335‐358. · Zbl 1195.65195
[23] Nikitin K, Terekhov K, Vassilevski Y. A monotone nonlinear finite volume method for diffusion equations and multiphase flows. Comput Geosci. 2014;18:311‐324. · Zbl 1378.76076
[24] Vidović D, Dotlić M, Pokorni B, Pus̆ić M, Dimkić M. Piecewise linear transformation in diffusive flux discretizations. J Comput Phys. 2015;282:227‐237. · Zbl 1352.65433
[25] Lai X, Sheng Z, Yuan G. Monotone finite volume scheme for three dimensional diffusion equation on tetrahedral meshes. Commun Comput Phys. 2017;21:162‐181. · Zbl 1388.65081
[26] Schneider M, Flemisch B, Helmig R, Terekhov K, Tchelepi H. Monotone nonlinear finite‐volume method for challenging grids. Comput Geosci. 2018;22(2):565‐586. · Zbl 1405.65145
[27] Chernyshenko A, Vassilevski Y. A finite volume scheme with the discrete maximum principle for diffusion equations on polyhedral meshes. In: Fuhrmann J, Ohlberger M, Rohde C, eds. Finite Volumes for Complex Applications VII: Methods and Theoretical Aspects. Cham: Springer; 2014:197‐205. · Zbl 1298.65158
[28] Eymardand R, Guichard C, Herbin R. Small‐stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN. 2012;46:265‐290. · Zbl 1271.76324
[29] Bank RE, Rose DJ. Some error estimates for the box method. SIAM J Numer Anal. 1987;24:777‐787. · Zbl 0634.65105
[30] Hackbusch W. On first and second order box schemes. Computing. 1989;41(4):277‐296. · Zbl 0649.65052
[31] Cai Z, McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grids. SIAM J Numer Anal. 1990;27:636‐655. · Zbl 0707.65073
[32] Li Y, Li R. Generalized difference methods on arbitrary quadrilateral networks. J Comput Math. 1999;17:653‐672. · Zbl 0946.65098
[33] Li R, Chen Z, Wu W. Generalized Difference Methods for Differential Equations. New York: Marcel Dekker; 2000. · Zbl 0940.65125
[34] Zhang Z, Zou Q. Vertex‐centered finite volume schemes of any order over quadrilateral meshes for elliptic boundary value problems. Numer Math. 2015;130:363‐393. · Zbl 1338.65233
[35] Lipnikov K, Manzini G, Moulton JD, Shashkov M. The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. J Comput Phys. 2016;305:111‐126. · Zbl 1349.65315
[36] Wu J. Vertex‐centered linearity‐preserving schemes for nonlinear parabolic problems on polygonal grids. J Sci Comput. 2017;71:499‐524. · Zbl 1398.65224
[37] Wu J, Gao Z. Interpolation‐based second‐order monotone finite volume schemes for anisotropic diffusion equations on general grids. J Comput Phys. 2014;275:569‐588. · Zbl 1349.65586
[38] Coudière Y, Vila JP, Villedieu P. Convergence rate of a finite volume scheme for a two dimensional convection‐diffusion problem. ESAIM: M2AN. 1999;33:493‐516. · Zbl 0937.65116
[39] Lipnikov K, Svyatskiy D, Vassilevski Y. Anderson acceleration for nonlinear finite volume scheme for advection‐diffusion problems. SIAM J Sci Comput. 2013;35:A1120‐A1136. · Zbl 1266.65181
[40] Berman A, Plemmons RJ. Nonnegative Matrices in the Mathematical Sciences. New York: Academic Press; 1979. · Zbl 0484.15016
[41] Eymard R, Henry G, Herbin R, Hubert F, Klöfkorn R, Manzini G. 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Fořt J, Fürst J, Halama J, Herbin R, Hubert F, eds. Finite Volumes for Complex Applications VI Problems & Perspectives. Berlin, Heidelberg: Springer; 2011:895‐930. · Zbl 1246.76053
[42] Fořt J, Fürst J, Halama J, Herbin R, Hubert F. Finite Volumes for Complex Applications VI Problems & Perspectives. Berlin, Heidelberg: Springer; 2011. · Zbl 1220.76004
[43] Sun W, Wu J, Zhang X. A family of linearity‐preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids. Comput Methods Appl Mech Engrg. 2013;267:418‐433. · Zbl 1286.76138
[44] Zel’dovich YB, Raizer YP. Physics of Shock Waves and High‐Temperature Hydrodynamic Phenomena, Vol. II. New York: Academic Press; 1967.
[45] Shestakov AI, Prasad MK, Milovich JL, Gentile NA, Painter JF, Furnish G. The radiation‐hydrodynamic ICF3D code. Comput Methods Appl Mech Engrg. 2000;187:181‐200. · Zbl 0981.76057
[46] Schneider M, Agélas L, Enchéry G, Flemisch B. Convergence of nonlinear finite volume schemes for heterogeneous anisotropic diffusion on general meshes. J Comput Phys. 2017;351:80‐107. · Zbl 1380.65340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.