×

A family of linearity-preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids. (English) Zbl 1286.76138

Summary: A family of cell-centered finite volume schemes are proposed for anisotropic diffusion problems on arbitrary polyhedral grids with planar facets. The derivation of the schemes is done under a general framework through a certain linearity-preserving approach. The key ingredient of our algorithm is to employ solely the so-called harmonic averaging points located at the cell interfaces to define the auxiliary unknowns, which not only makes the interpolation procedure for auxiliary unknowns simple and positivity-preserving, but also reduces the stencil of the schemes. The final schemes are cell-centered with a small stencil of 25-point on the structured hexahedral grids. Moreover, the schemes satisfy the local conservation condition, treat discontinuity exactly and allow for a simple stability analysis. A second-order accuracy in the \(L_2\) norm and a first-order accuracy in the \(H_1\) norm are observed numerically on general distorted meshes in case that the diffusion tensor is anisotropic and discontinuous.

MSC:

76R50 Diffusion
76M12 Finite volume methods applied to problems in fluid mechanics
65N08 Finite volume methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 3-4, 405-432 (2002) · Zbl 1094.76550
[2] Agelas, L.; Eymard, R.; Herbin, R., A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, C.R. Acad. Sci. Paris, Ser. I, 347, 11-12, 673-676 (2009) · Zbl 1166.65051
[3] Andreianov, B.; Boyer, F.; Hubert, F., Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes, Numer. Methods Partial Differ. Equ., 23, 1, 145-195 (2007) · Zbl 1111.65101
[4] Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 10, 1533-1551 (2005) · Zbl 1083.65099
[5] Brezzi, F.; Lipnikov, K.; Shashkov, M.; Simoncini, V., A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Engrg., 196, 37-40, 3682-3692 (2007) · Zbl 1173.76370
[6] Chen, Q.; Wan, J.; Yang, Y.; Mifflin, R., Enriched multi-point flux approximation for general grids, J. Comput. Phys., 227, 3, 1701-1721 (2008) · Zbl 1221.76123
[7] Coudiére, Y.; Vila, J.-P.; Villedieu, P., Convergence rate of a finite volume scheme for a two-dimensional diffusion convection problem, Math. Model. Numer. Anal., 33, 3, 493-516 (1999) · Zbl 0937.65116
[8] Coudiére, Y.; Pierre, C.; Rousseau, O.; Turpault, R., A 2D/3D discrete duality finite volume scheme. Application to ECG simulation, Int. J. Finite, 6, 1, 1-24 (2009) · Zbl 1490.65238
[9] Coudiére, Y.; Hubert, F., A 3D discrete duality finite volume method for nonlinear elliptic equations, SIAM J. Sci. Comput., 33, 4, 1739-1764 (2011) · Zbl 1243.35061
[10] Delcourte, S.; Domelevo, K.; Omnes, P., A discrete duality finite volume approach to Hodge decomposition and div-curl problems on almost arbitrary two-dimensional meshes, SIAM J. Numer. Anal., 45, 3, 1142-1174 (2007) · Zbl 1152.65110
[11] Edwards, M. G., Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids, Comput. Geosci., 6, 3-4, 433-452 (2002) · Zbl 1036.76034
[12] Eymard, R.; Henry, G.; Herbin, R.; Hubert, F.; Klöfkorn, R.; Manzini, G., 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Fort, J.; Furst, J.; Halama, J.; Herbin, R.; Hubert, F., Finite Volumes for Complex Applications VI - Problems and Perspectives (2011), Springer), 893-929
[13] Eymard, R.; Herbin, R.; Guichard, C., Small-stencil 3D schemes for diffusive flows in porous media, ESAIM Math. Model. Numer. Anal., 46, 2, 265-290 (2012) · Zbl 1271.76324
[14] Eymard, R.; Gallouët, T.; Herbin, R., Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30, 4, 1009-1043 (2010) · Zbl 1202.65144
[15] Gao, Z.; Wu, J., A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes, Int. J. Numer. Methods in Fluids, 67, 12, 2157-2183 (2011) · Zbl 1426.76367
[16] Hang, X.; Sun, W.; Ye, C., Finite volume solution of heat and moisture transfer through three-dimensional textile materials, Comput. Fluids, 57, 25-39 (2012) · Zbl 1365.76156
[17] Herbin, R.; Hubert, F., Benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Eymard, R.; Herard, J. M., Finite Volumes for Complex Applications (V) (2008), Wiley), 659-692 · Zbl 1422.65314
[18] Hermeline, F., Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes, Comput. Methods Appl. Mech. Engrg., 192, 16-18, 1939-1959 (2003) · Zbl 1037.65118
[19] Hermeline, F., Approximation of 2-D and 3-D diffusion operators with variable full tensor coefficients on arbitrary meshes, Comput. Methods Appl. Mech. Engrg., 196, 21-24, 2497-2526 (2007) · Zbl 1173.76362
[20] Hermeline, F., A finite volume method for approximating 3D diffusion operators on general meshes, J. Comput. Phys., 228, 16, 5763-5786 (2009) · Zbl 1168.76340
[21] Klausen, R. A.; Winther, R., Robust convergence of multi point flux approximation on rough grids, Numer. Math., 104, 3, 317-337 (2006) · Zbl 1102.76036
[22] Li, B.; Sun, W., Heat-sweat flow in three-dimensional porous textile media, Nonlinearity, 25, 2, 421-447 (2012) · Zbl 1235.35159
[23] Lipnikov, K.; Shashkov, M.; Yotov, I., Local flux mimetic finite difference methods, Numer. Math., 112, 1, 115-152 (2009) · Zbl 1165.65063
[24] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys., 228, 3, 703-716 (2009) · Zbl 1158.65083
[25] Wheeler, M. F.; Yotov, I., A multipoint flux mixed finite element method, SIAM J. Numer. Anal., 44, 5, 2082-2106 (2006) · Zbl 1121.76040
[26] Wu, J.; Dai, Z.; Gao, Z.; Yuan, G., Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys., 229, 9, 3382-3401 (2010) · Zbl 1187.65119
[27] Wu, J.; Gao, Z., A nine-point scheme with explicit weights for diffusion equations on distorted meshes, Appl. Numer. Math., 61, 7, 844-867 (2011) · Zbl 1228.65211
[28] Wu, J.; Gao, Z.; Dai, Z., A stabilized linearity-preserving scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes, J. Comput. Phys., 231, 21, 7152-7169 (2012) · Zbl 1284.65114
[29] Yuan, G.; Sheng, Z., Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227, 12, 6288-6312 (2008) · Zbl 1147.65069
[30] Zhao, Q.; Yuan, G., Analysis and construction of cell-centered finite volume scheme for diffusion equations on distorted meshes, Comput. Methods Appl. Mech. Engrg., 198, 34-40, 3039-3050 (2009) · Zbl 1229.76065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.