×

Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids. (English) Zbl 1349.65586

Summary: We propose two interpolation-based monotone schemes for the anisotropic diffusion problems on unstructured polygonal meshes through the linearity-preserving approach. The new schemes are characterized by their nonlinear two-point flux approximation, which is different from the existing ones and has no constraint on the associated interpolation algorithm for auxiliary unknowns. Thanks to the new nonlinear two-point flux formulation, it is no longer required that the interpolation algorithm should be a positivity-preserving one. The first scheme employs vertex unknowns as the auxiliary ones, and a second-order but not positivity-preserving interpolation algorithm is utilized. The second scheme uses the so-called harmonic averaging points located on cell edges to define the auxiliary unknowns, and a second-order positivity-preserving interpolation method is employed. Both schemes have nearly the same convergence rates as compared with their related second-order linear schemes. Numerical results demonstrate that the new schemes are monotone, and have the second-order accuracy for the solution and first-order for its gradient on severely distorted meshes.

MSC:

65N08 Finite volume methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Software:

SusHi

References:

[1] Aavatsmark, I.; Barkve, T.; Bøe, Ø.; Mannseth, T., Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods, SIAM J. Sci. Comput., 19, 5, 1700-1716 (1998) · Zbl 0951.65080
[2] Aavatsmark, I.; Eigestad, G.; Mallison, B.; Nordbotten, J., A compact multipoint flux approximation method with improved robustness, Numer. Methods Partial Differ. Equ., 24, 5, 1329-1360 (2008) · Zbl 1230.65114
[3] Agelas, L.; Eymard, R.; Herbin, R., A nine-point finite volume scheme for the simulation of diffusion in heterogeneous media, C. R. Acad. Sci. Paris, Ser. I, 347, 673-676 (2009) · Zbl 1166.65051
[4] Aricò, C.; Tucciarelli, T., Monotonic solution of heterogeneous anisotropic diffusion problems, J. Comput. Phys., 252, 219-249 (2013) · Zbl 1349.76800
[5] Cancès, C.; Cathala, M.; Potier, C. L., Monotone corrections for generic cell-centered finite volume approximations of anisotropic diffusion equations, Numer. Math., 125, 387-417 (2013) · Zbl 1281.65139
[6] Eymard, R.; Gallouet, T.; Herbin, R., Benchmark for anisotropic problems. SUSHI: a scheme using stabilization and hybrid interfaces for anisotropic heterogeneous diffusion problems, (Eymard, R.; Herard, J.-M., Finite Volumes for Complex Applications V—Problems and Perspectives (2008), Wiley) · Zbl 1422.65310
[7] Eymard, R.; Henry, G.; Herbin, R.; Hubert, F.; Klofkorn, R.; Manzini, G., 3D benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Fort, J.; Furst, J.; Halama, J.; Herbin, R.; Hubert, F., Finite Volumes for Complex Applications VI—Problems and Perspectives (2011), Springer), 893-929
[8] Eymard, R.; Herbin, R.; Guichard, C., Small-stencil 3D schemes for diffusive flows in porous media, Math. Model. Numer. Anal., 46, 265-290 (2012) · Zbl 1271.76324
[9] Gao, Z.; Wu, J., A linearity-preserving cell-centered scheme for the heterogeneous and anisotropic diffusion equations on general meshes, Int. J. Numer. Methods Fluids, 67, 2157-2183 (2011) · Zbl 1426.76367
[10] Gao, Z.; Wu, J., A small stencil and extremum-preserving scheme for anisotropic diffusion problems on arbitrary 2D and 3D meshes, J. Comput. Phys., 250, 308-331 (2013) · Zbl 1349.65663
[11] Herbin, R.; Hubert, F., Benchmark on discretization schemes for anisotropic diffusion problems on general grids, (Eymard, R.; Herard, J.-M., Finite Volumes for Complex Applications V—Problems and Perspectives (2008), Wiley Press) · Zbl 1422.65314
[12] Kapyrin, I., A family of monotone methods for the numerical solution of three-dimensional diffusion problems on unstructured tetrahedral meshes, Dokl. Math., 76, 734-738 (2007) · Zbl 1416.65402
[13] Lipnikov, K.; Manzini, G.; Svyatskiy, D., Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems, J. Comput. Phys., 230, 2620-2642 (2011) · Zbl 1218.65117
[14] Lipnikov, K.; Shashkov, M.; Svyatskiy, D.; Vassilevski, Y., Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes, J. Comput. Phys., 227, 1, 492-512 (2007) · Zbl 1130.65113
[15] Lipnikov, K.; Svyatskiy, D.; Vassilevski, Y., Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes, J. Comput. Phys., 228, 703-716 (2009) · Zbl 1158.65083
[16] Liska, R.; Shashkov, M., Enforcing the discrete maximum principle for linear finite element solutions of second-order elliptic problems, Commun. Comput. Phys., 3, 852-877 (2008) · Zbl 1199.65381
[17] Manzini, G.; Putti, M., Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations, J. Comput. Phys., 220, 751-771 (2007) · Zbl 1109.65101
[18] Le Potier, C., Schema volumes finis pour des operateurs de diffusion fortement anisotropes sur des maillages non structures, C. R. Math. Acad. Sci. Paris, 340, 921-926 (2005) · Zbl 1076.76049
[19] Le Potier, C., Schema volumes finis monotone pour des operateurs de diffusion fortement anisotropes sur des maillages de triangle non structures, C. R. Math. Acad. Sci. Paris, 341, 787-792 (2005) · Zbl 1081.65086
[20] Le Potier, C., A linear scheme satisfying a maximum principle for anisotropic diffusion operators on distorted grids, C. R. Acad. Sci. Paris, Ser. I, 347, 105-110 (2009) · Zbl 1158.65079
[21] Queiroz, L. E.S.; Souza, M. R.A.; Contreras, F. R.L.; Lyra, P. R.M.; de Carvalho, D. K.E., On the accuracy of a nonlinear finite volume method for the solution of diffusion problems using different interpolations strategies, Int. J. Numer. Methods Fluids, 74, 4, 270-291 (2014) · Zbl 1455.65203
[22] Sheng, Z.; Yuan, G., An improved monotone finite volume scheme for diffusion equation on polygonal meshes, J. Comput. Phys., 231, 3739-3754 (2012) · Zbl 1242.65219
[23] Shestakov, A. I.; Harte, J. A.; Kershaw, D. S., Solution of the diffusion equation by the finite elements in Lagrangian hydrodynamic codes, J. Comput. Phys., 76, 385-413 (1988) · Zbl 0639.76090
[24] Sun, W.; Wu, J.; Zhang, X., A family of linearity-preserving schemes for anisotropic diffusion problems on arbitrary polyhedral grids, Comput. Methods Appl. Mech. Eng., 267, 418-433 (2013) · Zbl 1286.76138
[25] Wu, J.; Dai, Z.; Gao, Z.; Yuan, G., Linearity preserving nine-point schemes for diffusion equation on distorted quadrilateral meshes, J. Comput. Phys., 229, 9, 3382-3401 (2010) · Zbl 1187.65119
[26] Wu, J.; Gao, Z.; Dai, Z., A stabilized linearity-preserving scheme for the heterogeneous and anisotropic diffusion problems on polygonal meshes, J. Comput. Phys., 231, 7152-7169 (2012) · Zbl 1284.65114
[27] Yuan, G.; Sheng, Z., Monotone finite volume schemes for diffusion equations on polygonal meshes, J. Comput. Phys., 227, 12, 6288-6312 (2008) · Zbl 1147.65069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.