×

A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains. (English) Zbl 1290.76083

Summary: This paper proposes a 2D unstructured finite volume Godunov-type shallow water model to simulate complex flows involving wet-dry interfaces over irregular terrains. In this model, the MUSCL linear reconstruction is used to compute the values of variables at cell edges. These values are then modified with a non-negative reconstruction method to preserve non-negative edge water depths and the C-property. The modified values are then employed to evaluate the fluxes and the slope source terms using the Harten, Lax and van Leer approximate Riemann solver with the contact wave restored (HLLC) and the slope flux method, respectively. The friction source terms are solved by a splitting point-implicit method. The novel aspect of the model is an efficient approach to eliminate spurious edge velocities with high local extreme values caused by MUSCL reconstruction of the conservative variables near wet-dry interfaces. This approach is crucial to preserve the numerical stability of the model when simulating wetting and drying. The proposed model is tested against exact solutions, laboratory experiments and a real dam-break case. The results show that the proposed model is accurate and stable for handling complex flows with moving wet-dry interfaces over complex beds on unstructured grids.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Audusse, E.; Bouchut, F.; Bristeau, M.-O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J Sci Comput, 25, 2050-2065 (2004) · Zbl 1133.65308
[2] Audusse, E.; Bristeau, M. O., A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes, J Comput Phys, 206, 311-333 (2005) · Zbl 1087.76072
[3] Begnudelli, L.; Sanders, B. F., Unstructured grid finite volume algorithm for shallow water flow and scalar transport with wetting and drying, J Hydraul Eng, 132, 371-384 (2006)
[4] Begnudelli, L.; Sanders, B. F., Conservative wetting and drying methodology for quadrilateral grid finite-volume models, J Hydraul Eng, 133, 312-322 (2007)
[5] Begnudelli, L.; Sanders, B. F.; Bradford, S. F., Adaptive Godunov-based model for flood simulation, J Hydraul Eng, 134, 714-725 (2008)
[6] Benkhaldoun, F.; Elmahi, I.; Seand, M., A new finite volume method for flux-gradient and source-term balancing in shallow water equations, Comput Methods Appl Mech Eng, 3324-3335 (2010) · Zbl 1225.76209
[7] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput Fluids, 23, 1049-1071 (1994) · Zbl 0816.76052
[8] Berthon, C.; Marche, F.; Turpault, R., An efficient scheme on wet/dry transitions for shallow water equations with friction, Comput Fluids, 48, 192-201 (2011) · Zbl 1271.76178
[9] Bradford, S. F.; Sanders, B. F., Finite-volume model for shallow-water flooding of arbitrary topography, J Hydraul Eng, 128, 289-298 (2002)
[10] Briggs, M.; Synolakis, C.; Harkins, G.; Green, D., Laboratory experiments of tsunami runup on a circular island, Pure Appl Geophys, 144, 569-593 (1995)
[11] Brufau, P.; García-Navarro, P.; Vázquez-Cendón, M. E., Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography, Int J Numer Methods Fluids, 45, 1047-1082 (2004) · Zbl 1060.76584
[12] Bryson, S.; Epshteyn, Y.; Kurganov, A.; Petrova, G., Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system, ESAIM: Math Modell Numer Anal, 45, 423-446 (2010) · Zbl 1267.76068
[13] Bunya, S.; Kubatko, E. J.; Westerink, J. J.; Dawson, C., A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations, Comput Methods Appl Mech Eng, 198, 1548-1562 (2009) · Zbl 1227.76026
[14] Bussing, T. R.; Murmant, E. M., Finite-volume method for the calculation of compressible chemically reacting flows, AIAA J, 26, 1070-1078 (1988) · Zbl 0661.76117
[15] Canestrelli, A.; Fagherazzi, S.; Lanzoni, S., A mass-conservative centered finite volume model for solving two-dimensional two-layer shallow water equations for fluid mud propagation over varying topography and dry areas, Adv Water Resour, 40, 54-70 (2012)
[16] Castro, M.; Ferreiro, A. F.; García-Rodríguez, J.; González-Vida, J.; Macías, J.; Parés, C., The numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layer systems, Math Comput Modell, 42, 419-439 (2005) · Zbl 1121.76008
[17] Cea, L.; Puertas, J.; María-Elena; Vázquez-Cendón, Depth averaged modelling of turbulent shallow water flow with wet-dry fronts, Arch Comput Methods Eng, 14, 303-341 (2007) · Zbl 1127.76013
[18] Delis, A. I.; Kazolea, M.; Kampanis, N. A., A robust high-resolution finite volume scheme for the simulation of long waves over complex domains, Int J Numer Methods Fluids, 56, 419-452 (2008) · Zbl 1129.76031
[19] Delis, A. I.; Nikolos, I. K.; Kazolea, M., Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows, Arch Comput Methods Eng, 18, 57-118 (2011) · Zbl 1284.76263
[20] Duran, A.; Liang, Q.; Marche, F., On the well-balanced numerical discretization of shallow water equations on unstructured meshes, J Comput Phys, 235, 565-586 (2013) · Zbl 1291.76215
[21] Frazpo, S. S., Experiments of dam-break wave over a triangular bottom sill, J Hydraul Res, 45, 19-26 (2007)
[22] Gallardo, J. M.; Parés, C.; Castro, M., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J Comput Phys, 227, 574-601 (2007) · Zbl 1126.76036
[23] George, D. L., Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: application to the Malpasset dam-break flood (france, 1959), Int J Numer Methods Fluids, 66, 1000-1018 (2010) · Zbl 1285.76023
[25] Hou, J.; Simons, F.; Hinkelmann, R., A 2D well-balanced shallow flow model for unstructured grids with novel slope source treatment, Adv Water Resour, 52, 107-131 (2013)
[26] Hou, J.; Simons, F.; Mahgoub, M.; Hinkelmann, R., A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography, Comput Methods Appl Mech Eng, 257, 126-149 (2013) · Zbl 1286.76020
[27] Hubbard, M. E., Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids, J Comput Phys, 155, 54-74 (1999) · Zbl 0934.65109
[28] Hubbard, M. E.; Dodd, N., A 2D numerical model of wave run-up and overtopping, Coast Eng, 47, 1-26 (2002)
[30] Kuiry, S. N.; Pramanik, K.; Sen, D., Finite volume model for shallow water equations with improved treatment of source terms, J Hydraul Eng, 134, 231-242 (2008)
[31] Kurganov, A.; Petrova, G., A second-order well-balanced positivity preserving central-upwind scheme for the Saint-Venant system, Commun Math Sci, 5, 133-160 (2007) · Zbl 1226.76008
[32] Larmaei, M. M.; Mahdi, T.-F., A new method for the treatment of wetting-drying fronts, Appl Math Modell, 36, 2286-2302 (2012) · Zbl 1243.76066
[33] Liang, Q., flood simulation using a well-balanced shallow flow model, J Hydraul Eng, 136, 669-675 (2010)
[34] Liang, Q.; Borthwick, A. G., Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Comput Fluids, 38, 221-234 (2009) · Zbl 1237.76017
[35] Liang, Q.; Marche, F., Numerical resolution of well-balanced shallow water equations with complex source terms, Adv Water Resour, 32, 873-884 (2009)
[36] Marche, F.; Bonneton, P.; Fabrie, P.; Seguin, N., Evaluation of well-balanced bore-capturing schemes for 2D wetting and drying processes, Int J Numer Methods Fluids, 53, 867-894 (2007) · Zbl 1229.76063
[37] Murillo, J.; García-Navarro, P., Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow, J Comput Phys, 230, 7202-7239 (2011) · Zbl 1408.76083
[38] Murillo, J.; García-Navarro, P.; Burguete, J., Conservative numerical simulation of multi-component transport in two-dimensional unsteady shallow water flow, J Comput Phys, 228, 5539-5573 (2009) · Zbl 1280.76042
[39] Murillo, J.; Garcia-Navarro, P.; Burguete, J., Analysis of a second-order upwind method for the simulation of solute transport in 2D shallow water flow, Int J Numer Methods Fluids, 56, 661-686 (2008) · Zbl 1130.76054
[40] Murillo, J.; Garcia-Navarro, P.; Burguete, J.; Brufau, P., A conservative 2D model of inundation flow with solute transport over dry bed, Int J Numer Methods Fluids, 52, 1059-1092 (2006) · Zbl 1104.76064
[41] Murillo, J.; Garcia-Navarro, P.; Burguete, J.; Brufau, P., The influence of source terms on stability, accuracy and conservation in two-dimensional shallow flow simulation using triangular finite volumes, Int J Numer Methods Fluids, 54, 543-590 (2007) · Zbl 1204.76023
[42] Nikolos, I.; Delis, A., An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput Methods Appl Mech Eng, 198, 3723-3750 (2009) · Zbl 1230.76035
[43] Prestininzi, P., Suitability of the diffusive model for dam break simulation: Application to a CADAM experiment, J Hydrol, 30, 172-185 (2008)
[45] Sanders, B. F., Integration of a shallow water model with a local time step, J Hydraul Res, 46, 466-475 (2008)
[46] Sanders, B. F.; Schubert, J. E.; Detwiler, R. L., ParBreZo: a parallel, unstructured grid, Godunov-type, shallownext term-previous termwaternext term code for high-resolution flood inundation modeling at the regional scale, Adv Water Resour, 33, 1456-1467 (2010)
[48] Sivakumar, P.; Hyams, D.; Taylor, L.; Briley, W., A primitive-variable Riemann method for solution of the shallow water equations with wetting and drying, J Comput Phys, 228, 7452-7472 (2009) · Zbl 1421.76176
[49] Skoula, Z. D.; Borthwick, A. G.L.; Moutzouris, C. I., Godunov-type solution of the shallow water equations on adaptive unstructured triangular grids, Int J Comput Fluid Dyn, 20, 621-636 (2006) · Zbl 1184.76754
[50] Song, L.; Zhou, J.; Guo, J.; Zou, Q.; Liu, Y., A robust well-balanced finite volume model for shallow water flows with wetting and drying over irregular terrain, Adv Water Resour, 34, 915-932 (2011)
[51] Song, L.; Zhou, J.; Li, Q.; Yang, X.; Zhang, Y., An unstructured finite volume model for dam-break floods with wet/dry fronts over complex topography, Int J Numer Methods Fluids, 67, 960-980 (2011) · Zbl 1316.76060
[52] Sun, M.; Takayama, K., Error localization in solution-adaptive grid methods, J Comput Phys, 190, 346-350 (2003) · Zbl 1276.76048
[53] Tan, W., Shallow water hydrodynamics (1992), Elsevier Science Publishing Company: Elsevier Science Publishing Company New York
[54] Thacker, W. C., Some exact solutions to the nonlinear shallow-water wave equations, J Fluid Mech, 107, 499-508 (1981) · Zbl 0462.76023
[55] Toro, E.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 1994, 25-34 (1994) · Zbl 0811.76053
[56] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction (2009), Springer-Verlag: Springer-Verlag Berlin, Heidelberg · Zbl 1227.76006
[57] van Leer, B., Towards the ultimate conservative difference scheme. V.A second-order sequel to Godunov’s method, J Comput Phys, 32, 101-136 (1979) · Zbl 1364.65223
[58] Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J Comput Phys, 118, 120-130 (1995) · Zbl 0858.76058
[59] Wang, Y.; Liang, Q.; Kesserwani, G.; Hall, J. W., A 2D shallow flow model for practical dam-break simulations, J Hydraul Res, 49, 307-316 (2011)
[60] Yoon, T. H.; ASCE, F.; Kang, S.-K., Finite volume model for two-dimensional shallow water flows on unstructured grids, J Hydraul Eng, 130, 678-688 (2004)
[61] Yu, C.; Duan, J., Two-dimensional depth-averaged finite volume model for unsteady turbulent flow, J Hydraul Res, 50, 599-611 (2012)
[62] Zhou, J. G.; Causon, D. M.; Ingram, D. M.; Mingham, C. G., Numerical solutions of the shallow water equations with discontinuous bed topography, Int J Numer Methods Fluids, 38, 769-788 (2002) · Zbl 1040.76045
[63] Zhou, J. G.; Causon, D. M.; Mingham, C. G.; Ingram, D. M., The surface gradient method for the treatment of source terms in the shallow-water equations, J Comput Phys, 168, 1-25 (2001) · Zbl 1074.86500
[64] Zhou, J. G.; Causon, D. M.; Mingham, C. G.; Ingram, D. M., Numerical prediction of dam-break flows in general geometries with complex bed topography, J Hydraul Eng, 130, 332-340 (2004)
[65] Zokagoa, J.-M.; Soulaïmani, A., Modeling of wetting-drying transitions in free surface flows over complex topographies, Comput Methods Appl Mech Eng, 199, 2281-2304 (2010) · Zbl 1231.76184
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.