×

A new method for the treatment of wetting-drying fronts. (English) Zbl 1243.76066

Summary: A new method is developed for the treatment of wetting-drying fronts in depth-averaged simulations. Some benchmark tests are devised in order to examine the performance of the new method at extreme conditions. The depth-averaged tool with two different wetting-drying process and Fluent6.3 are then applied to the benchmark tests. It is assumed that a solution by Fluent6.3 is the realistic solution and, a depth-averaged solution which is more similar to the solution by Fluent6.3 is more accurate.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76D27 Other free boundary flows; Hele-Shaw flows
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Delis, A. I.; Katsaounis, T., Numerical solution of the two-dimensional shallow water equations by the application of relaxation methods, Appl. Math. Modell., 29, 754-783 (2005) · Zbl 1067.76586
[2] Di Martino, B.; Giacomoni, C.; Martin Paoli, J.; Simonnet, P., Simulation of the spread of a viscous fluid using a bidimensional shallow water model, Appl. Math. Modell., 35, 3387-3395 (2011) · Zbl 1221.76141
[3] Knock, C.; Ryrie, S. C., Parameterization of dispersion in the depth-averaged transport equation, Appl. Math. Modell., 18, 582-587 (1994) · Zbl 0817.76014
[4] Zoppou, C.; Roberts, S., Numerical solution of the two-dimensional unsteady dam break, Appl. Math. Modell., 24, 457-475 (2000) · Zbl 1004.76064
[5] Chen, D.; Duan, J. G., Case study: Two-dimensional model simulation of channel migration processes in West Jordan River, Utah, J. Hydraul. Eng., 134, 315-327 (2008)
[6] George, K. J.; Stripling, S., Improving the simulation of drying and wetting in a two-dimensional tidal numerical model, Appl. Math. Modell., 19, 2 (1995) · Zbl 0826.76061
[7] Begnudelli, L.; Sanders, B. F., Conservative wetting and drying methodology for quadrilateral grid finite-volume models, J. Hydraul. Eng., 133, 312-322 (2007)
[8] Nikolos, I. K.; Delis, A. I., An unstructured node-centered finite volume scheme for shallow water flows with wet/dry fronts over complex topography, Comput. Methods Appl. Mech. Eng., 198, 3723-3750 (2009) · Zbl 1230.76035
[9] Sleigh, P. A.; Gaskell, P. H.; Berzins, M.; Wright, N. G., An unstructured finite-volume algorithm for predicting flow in rivers and estuaries, Comput. Fluids, 27, 479-508 (1998) · Zbl 0964.76051
[10] Wu, W., Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels, J. Hydraul. Eng., 130, 1013-1024 (2004)
[11] Brufau, P.; Garcia-Navarro, P.; Vazquez-Cendon, M. E., Zero mass error using unsteady wetting-drying conditions in shallow flows over dry irregular topography, Int. J. Numer. Methods Fluids, 45, 1047-1082 (2004) · Zbl 1060.76584
[12] Lai, Y. G., Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh, J. Hydraul. Eng., 136, 12-23 (2010)
[13] Xia, J.; Lin, B.; Falconer, R. A.; Wang, G., Modelling dam-break flows over mobile beds using a 2D coupled approach, Adv. Water Res., 33, 171-183 (2010)
[14] Murillo, J.; Garcia-Navarro, P.; Burguete, J.; Brufau, P., A conservative 2D model of inundation flow with solute transport over dry bed, Int. J. Numer. Methods Fluids, 52, 1059-1092 (2006) · Zbl 1104.76064
[15] Zokagoa, J.-M.; Soulaimani, A., Modeling of wetting-drying transitions in free surface flows over complex topographies, Comput. Methods Appl. Mech. Eng., 199, 2281-2304 (2010) · Zbl 1231.76184
[16] Liang, Q.; Borthwick, A. G.L., Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Comput. Fluids, 38, 221-234 (2009) · Zbl 1237.76017
[17] Bennett, S. J.; Wu, W.; Alonso, C. V.; Wang, S. S.Y., Modeling fluvial response to in-stream woody vegetation: Implications for stream corridor restoration, Earth Surf. Processes Landforms, 33, 890-909 (2008)
[18] B. Minh Duc, Berechnung der stroemung und des sedimenttransorts in fluessen mit einem tieffengemittelten numerischen verfahren, PhD thesis, The University of Karlsruhe, Karlsruhe, Germany, 1998.; B. Minh Duc, Berechnung der stroemung und des sedimenttransorts in fluessen mit einem tieffengemittelten numerischen verfahren, PhD thesis, The University of Karlsruhe, Karlsruhe, Germany, 1998.
[19] Wu, W.; Shields Jr, F. D.; Bennett, S. J.; Wang, S. S.Y., A depth-averaged two-dimensional model for flow, sediment transport, and bed topography in curved channels with riparian vegetation, Water Resour. Res., 41, W03015 (2005)
[20] Murillo, J.; Garcia-Navarro, P.; Burguete, J., Analysis of a second-order upwind method for the simulation of solute transport in 2D shallow water flow, Int. J. Numer. Methods Fluids, 56, 661-686 (2008) · Zbl 1130.76054
[21] Xia, J.; Falconer, R. A.; Lin, B.; Tan, G., Modelling flood routing on initially dry beds with the refined treatment of wetting and drying, Int. J. River Basin Manage., 9, 1-19 (2010)
[22] Zhao, D. H.; Shen, H. W.; Tabios, G. Q.; Lai, J. S.; Tan, W. Y., Finite-volume two-dimensional unsteady-flow model for river basins, J. Hydraul. Eng., 120, 863-882 (1994)
[23] M. Moradi Larmaei, J. Behzadi, T.-F. Mahdi, Grid independent depth-averaged simulations with a collocated unstructured finite volume scheme, Int. J. Numer. Methods Fluids, Article first published online: 22 March 2011, DOI: 10.1002/fld.2538.; M. Moradi Larmaei, J. Behzadi, T.-F. Mahdi, Grid independent depth-averaged simulations with a collocated unstructured finite volume scheme, Int. J. Numer. Methods Fluids, Article first published online: 22 March 2011, DOI: 10.1002/fld.2538. · Zbl 1426.76392
[24] Moradi Larmaei, M.; Behzadi, J.; Mahdi, T.-F., Treatment of checkerboard pressure in the collocated unstructured finite-volume scheme, Numer. Heat Transfer, Part B: fundam., 58, 121-144 (2010)
[25] M. Moradi Larmaei, and T.-F. Mahdi, Analysis of SIMPLE algorithm for depth averaged simulations, in: 6th International Symposium on Environmental Hydraulics, Athens, Greece, June 23-25, 2010.; M. Moradi Larmaei, and T.-F. Mahdi, Analysis of SIMPLE algorithm for depth averaged simulations, in: 6th International Symposium on Environmental Hydraulics, Athens, Greece, June 23-25, 2010.
[26] M. Moradi Larmaei, T.-F. Mahdi, Effect of interpolation technique on numerical accuracy and computational cost, in: 34th IAHR World Congress, International Association of Hydraulic Engineering & Research (IAHR), Brisbane, Australia, June 26-July 1, 2011.; M. Moradi Larmaei, T.-F. Mahdi, Effect of interpolation technique on numerical accuracy and computational cost, in: 34th IAHR World Congress, International Association of Hydraulic Engineering & Research (IAHR), Brisbane, Australia, June 26-July 1, 2011.
[27] Rodi, W., Turbulence models and their application in hydraulics. Turbulence models and their application in hydraulics, IAHR Monograph (1993), Balkema: Balkema Rotterdam, Netherlands
[28] Rhie, C. M.; Chow, W. L., Numerical Study of the turbulent flow past an airfoil with trailing edge separation, AIAA Journal, 21, 1525-1532 (1983) · Zbl 0528.76044
[29] Fluent6.3_user’s_guide, Fluent Inc: <http://my.fit.edu/itresources/manuals/fluent6.3/help/html/ug//main_pre.htm>; Fluent6.3_user’s_guide, Fluent Inc: <http://my.fit.edu/itresources/manuals/fluent6.3/help/html/ug//main_pre.htm>
[30] Launder, B. E.; Spalding, D. B., The Numerical Computation of Turbulent Flows, Comput. Methods Appl. Mech. Eng., 3, 269-289 (1974) · Zbl 0277.76049
[31] Toro, E. F., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), John Wiley & Sons: John Wiley & Sons Chichester, England · Zbl 0996.76003
[32] Karim, M. F.; Tanimoto, K.; Hieu, P. D., Modelling and simulation of wave transformation in porous structures using VOF based two-phase flow model, Appl. Math. Modell., 33, 343-360 (2009) · Zbl 1167.76377
[33] Solórzano-López, J.; Zenit, R.; Ramı´rez-Argáez, M. A., Mathematical and physical simulation of the interaction between a gas jet and a liquid free surface, Appl. Math. Modell., 35, 4991-5005 (2011) · Zbl 1228.76179
[34] Srinivasan, V.; Salazar, A. J.; Saito, K., Modeling the disintegration of modulated liquid jets using volume-of-fluid (VOF) methodology, Appl. Math. Modell., 35, 3710-3730 (2011) · Zbl 1221.76159
[35] Nobari, M. R.H.; Ketabdari, M. J.; Moradi, M., A modified volume of fluid advection method for uniform Cartesian grids, Appl. Math. Modell., 33, 2298-2310 (2009) · Zbl 1185.76818
[36] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[37] Harvie, D. J.E.; Fletcher, D. F., A new volume of fluid advection algorithm: the defined donating region scheme, Int. J. Numer. Methods Fluids, 35, 151-172 (2001) · Zbl 0991.76062
[38] Martin, J. C.; Moyce, W. J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. R. Soc. London, Ser. A, 244, 325-334 (1952)
[39] Hieu, P. D.; Katsutoshi, T.; Ca, V. T., Numerical simulation of breaking waves using a two-phase flow model, Appl. Math. Modell., 28, 983-1005 (2004) · Zbl 1130.76350
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.