×

Depth-averaged modelling of turbulent shallow water flow with wet-dry fronts. (English) Zbl 1127.76013

Summary: Depth-averaged models are widely used in engineering practice in order to model environmental flows in river and coastal regions, as well as shallow flows in hydraulic structures. This paper deals with depth-averaged turbulence modelling. The most important and widely used depth-averaged turbulence models are reviewed and discussed, and a depth-averaged algebraic stress model is presented. A finite volume model for solving the depth-averaged shallow water equations coupled with several turbulence models is described with special attention to the modelling of wet-dry fronts. In order to assess the performance of the model, several flows are modelled, and the numerical results are compared with experimental data.

MSC:

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76F10 Shear flows and turbulence
76T10 Liquid-gas two-phase flows, bubbly flows
76M12 Finite volume methods applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

Software:

HLLE
Full Text: DOI

References:

[1] Akanbi AA, Katopodes ND (1988) Model for flood propagation on initially dry land. J Hydraul Eng 114(7):689–706 · doi:10.1061/(ASCE)0733-9429(1988)114:7(689)
[2] Altai S, Zhang J, Chu VH (1999) Shallow turbulent flow simulation using two-length-scale model. J Eng Mech 125(7):780–788 · doi:10.1061/(ASCE)0733-9399(1999)125:7(780)
[3] Aulisa E, Manservisi S, Scardovelli R (2003) A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows. J Comput Phys 188:611–639 · Zbl 1127.76346 · doi:10.1016/S0021-9991(03)00196-7
[4] Babarutsi S, Chu VH (1991) A two-length-scale model for quasi-two-dimensional turbulent shear flows. In: Proc 24th congr of IAHR, vol C, Madrid, Spain, pp 51–60
[5] Babarutsi S, Chu VH (1998) Modelling transverse mixing layer in shallow open-channel flows. J Hydraul Eng 124(7):718–727 · doi:10.1061/(ASCE)0733-9429(1998)124:7(718)
[6] Babarutsi S, Nassiri M, Chu VH (1996) Computation of shallow recirculating flow dominated by friction. J Hydraul Eng 122(7):367–372 · doi:10.1061/(ASCE)0733-9429(1996)122:7(367)
[7] Bellos CV, Soulis JV, Sakkas JG (1991) Computation of two-dimensional dam break induced flows. Adv Water Res 14(1):31–41 · doi:10.1016/0309-1708(91)90028-M
[8] Bermúdez A, Vázquez-Cendón ME (1994) Upwind methods for hyperbolic conservation laws with source terms. Comput Fluids 23(8):1049–1071 · Zbl 0816.76052 · doi:10.1016/0045-7930(94)90004-3
[9] Bermúdez A, Dervieux A, Desideri JA, Vázquez-Cendón ME (1998) Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes. Comput Methods Appl Mech Eng 155:49–72 · Zbl 0961.76047 · doi:10.1016/S0045-7825(97)85625-3
[10] Bijvelds MDJP, Kranenbutg C, Stelling GS (1999) 3D numerical simulation of turbulent shallow-water flow in square harbor. J Hydraul Eng 125(1):26–31 · doi:10.1061/(ASCE)0733-9429(1999)125:1(26)
[11] Bonillo J (2000) Un modelo de transporte de sustancias solubles para flujos turbulentos en lámina libre. Tesis doctoral, Área de Ingeniería Hidráulica, Universidad de A Coruña
[12] Booij R (1989) Depth-averaged k–{\(\epsilon\)} modelling. In: Proc 23rd IAHR congr, Delft, The Netherlands, vol A. IAHR, pp 198–206
[13] Bradford F, Sanders BF (2002) Finite-volume model for shallow-water flooding of arbitrary topography. J Hydraul Eng 128(3):289–298 · doi:10.1061/(ASCE)0733-9429(2002)128:3(289)
[14] Brufau P (2000) Simulación bidimensional de flujos hidrodinámicos transitorios en geometrías irregulares. Tesis doctoral, Área de Mécanica de Fluidos, Universidad de Zaragoza
[15] Brufau P, García-Navarro P (2000) Two-dimensional dam break flow simulation. Int J Numer Methods Fluids 33:35–57 · Zbl 0974.76535 · doi:10.1002/(SICI)1097-0363(20000515)33:1<35::AID-FLD999>3.0.CO;2-D
[16] Brufau P, Vázquez-Cendón ME, García-Navarro P (2002) A numerical model for the flooding and drying of irregular domains. Int J Numer Methods Fluids 39(3):247–275 · Zbl 1094.76538 · doi:10.1002/fld.285
[17] Brufau P, García-Navarro P, Vázquez-Cendón ME (2004) Zero mass error using unsteady wetting-drying conditions shallow flows over dry of irregular topography. Int J Numer Methods Fluids 45:1047–1082 · Zbl 1060.76584 · doi:10.1002/fld.729
[18] Casulli V, Stelling GS (1998) Numerical simulation of 3D quasi-hydrostatic free-surface flows. J Hydraul Eng 124(7):678–686 · doi:10.1061/(ASCE)0733-9429(1998)124:7(678)
[19] Casulli V, Zanolli P (2002) Semi-implicit numerical modeling of nonhydrostatic free-surface flows for environmental problems. Math Comput Model 36:1131–1149 · Zbl 1027.76034 · doi:10.1016/S0895-7177(02)00264-9
[20] Cea L (2005) An unstructured finite volume model for unsteady turbulent shallow water flow with wet-dry fronts: numerical solver and experimental validation. Doctoral Thesis, Departamento de Métodos Matemáticos y de Representación, Universidad de A Coruña
[21] Cea L, Ferreiro A, Vázquez-Cendón ME, Puertas J (2004) Experimental and numerical analysis of solitary waves generated by bed and boundary movements. Int J Numer Methods Fluids 46(8):793–813 · Zbl 1079.76521 · doi:10.1002/fld.774
[22] Cea L, French J, Vázquez-Cendón ME (2006) Numerical modelling of tidal flows in complex estuaries including turbulence: an unstructured finite volume solver and experimental validation. Int J Numer Meth Eng 67(13):1909–1932 · Zbl 1128.76040 · doi:10.1002/nme.1702
[23] Cea L, Pena L, Puertas J, Vázquez-Cendón ME, Peña E (2007) Application of several depth-averaged turbulence models to simulate flow in vertical slot fishways. J Hydraul Eng 133(2):160–172 · doi:10.1061/(ASCE)0733-9429(2007)133:2(160)
[24] Chen D, Jirka GH (1995) Experimental study of plane turbulent wakes in a shallow water layer. Fluid Dyn Res 16:11–41 · doi:10.1016/0169-5983(95)00053-G
[25] Chen D, Jirka GH (1997) Absolute and convective instabilities of plane turbulent wakes in a shallow water layer. J Fluid Mech 338:157–172 · Zbl 0899.76153 · doi:10.1017/S0022112097005041
[26] Chen D, Jirka GH (1998) Linear instability analysis of turbulent mixing layers and jets in shallow water layers. J Hydraul Res 36(5)
[27] Chu VH, Babarutsi S (1988) Confinement and bed-friction effects in shallow turbulent mixing layers. J Hydraul Eng 114(10):1257–1274 · doi:10.1061/(ASCE)0733-9429(1988)114:10(1257)
[28] Chu VH, Wu JH, Khayat RE (1991) Stability of transverse shear flows in shallow open channels. J Hydraul Eng 117(10):1370–1388 · doi:10.1061/(ASCE)0733-9429(1991)117:10(1370)
[29] Davidson L (1993) Implementation of a k–{\(\epsilon\)} model and a Reynolds stress model into a multiblock code. Tech Rep CRS4-APPMATH-93-21, Applied Mathematics and Simulation Group CRS4, Cagliary, Italy
[30] Davidson L (1997) An introduction to turbulence models. Tech Rep 97/2, Dept of Thermo and Fluid Dynamics, Chalmers University of Technology · Zbl 0904.60002
[31] Davies AM, Jones JE, Xing J (1997) Review of recent developments in tidal hydrodynamic modeling. II: Turbulence energy models. J Hydraul Eng 123(4):278–292 · doi:10.1061/(ASCE)0733-9429(1997)123:4(278)
[32] Dervieux A, Desideri JA (1992) Compressible flow solvers using unstructured grids. Rapports de Recherche 1732, INRIA
[33] Ding Y, Jia Y, Wang SSY (2004) Identification of Manning’s roughness coefficients in shallow water flows. J Hydraul Eng 130(6):501–510 · doi:10.1061/(ASCE)0733-9429(2004)130:6(501)
[34] Dodd N (1998) Numerical model of wave run-up, overtopping, and regeneration. J Waterw, Port, Coastal, Ocean Eng 124(2):73–81 · doi:10.1061/(ASCE)0733-950X(1998)124:2(73)
[35] Dracos T, Giger M, Jirka GH (1992) Plane turbulent jets in a bounded fluid layer. J Fluid Mech 241:587–614 · doi:10.1017/S0022112092002167
[36] Duan JG (2004) Simulation of flow and mass dispersion in meandering channels. J Hydraul Eng 130(10):964–976 · doi:10.1061/(ASCE)0733-9429(2004)130:10(964)
[37] Durbin P (1996) On the k–{\(\epsilon\)} stagnation point anomaly. Int J Heat Fluid Flow 17:89–90 · doi:10.1016/0142-727X(95)00073-Y
[38] Fernández-Nieto ED (2003) Aproximación numérica de leyes de conservación hiperbólicas no homogéneas. Aplicación a las ecuaciones de aguas someras. Tesis doctoral, Universidad de Sevilla
[39] García-Navarro P, Vázquez-Cendón ME (2000) On numerical treatment of the source terms in the shallow water equations. Comput Fluids 29:951–979 · Zbl 0986.76051 · doi:10.1016/S0045-7930(99)00038-9
[40] Gatski T, Speziale C (1993) On explicit algebraic stress models for complex turbulent flows. J Fluid Mech 154:59–78 · Zbl 0781.76052 · doi:10.1017/S0022112093002034
[41] Gerrits J (2001) Dynamics of liquid-filled spacecraft. PhD thesis, University of Groningen, The Netherlands
[42] Giger M, Dracos T, Jirka GH (1991) Entrainment and mixing in plane turbulent jets in shallow water. J Hydraul Res 29(4):615–643 · doi:10.1080/00221689109498980
[43] Harten A, Lax P, van Leer A (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25:35–61 · Zbl 0565.65051 · doi:10.1137/1025002
[44] Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225 · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[45] Hsieh TY, Yang JC (2003) Investigation on the suitability of two-dimensional depth-averaged models for bend-flow simulation. J Hydraul Eng 129(8):597–612 · doi:10.1061/(ASCE)0733-9429(2003)129:8(597)
[46] Hubbard ME, Dodd N (2002) A 2D numerical model of wave runup and overtopping. Coast Eng 47:1–26 · doi:10.1016/S0378-3839(02)00094-7
[47] Hubbard ME, García-Navarro P (2000) Flux difference splitting and the balancing of source terms and flux gradients. J Comput Phys 165:89–125 · Zbl 0972.65056 · doi:10.1006/jcph.2000.6603
[48] Idelsohn SR, Storti MA, Oñate E (2001) Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Comput Methods Appl Mech Eng 191:583–593 · Zbl 0999.76107 · doi:10.1016/S0045-7825(01)00303-6
[49] Ingram RG, Chu VH (1987) Flow around islands in Rupert Bay: an investigation of the bottom friction effect. J Geophys Res 92(C13):14521–14533 · doi:10.1029/JC092iC13p14521
[50] Jia Y, Wang SSY (1999) Numerical model for channel flow and morphological change studies. J Hydraul Eng 125(9):924–933 · doi:10.1061/(ASCE)0733-9429(1999)125:9(924)
[51] Jirka GH (2001) Large scale flow structures and mixing processes in shallow flows. J Hydraul Res 39(6):567–573 · doi:10.1080/00221686.2001.9628285
[52] Jones WP, Launder B (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314 · doi:10.1016/0017-9310(72)90076-2
[53] LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge texts in applied mathematics, vol 31. Cambridge University Press, Cambridge
[54] Lien HC, Hsieh TY, Yang JC, Yeh KC (1999) Bend-flow simulation using 2D depth-averaged model. J Hydraul Eng 125(10):1097–1108 · doi:10.1061/(ASCE)0733-9429(1999)125:10(1097)
[55] Lloyd PM, Stansby PK (1997) Shallow water flow around model conical islands of small side slope. Part 1: Surface piercing. J Hydraul Eng 123:1057–1067 · doi:10.1061/(ASCE)0733-9429(1997)123:12(1057)
[56] Lloyd PM, Stansby PK (1997) Shallow water flow around model conical islands of small side slope. Part 2: Submerged. J Hydraul Eng 123:1068–1077 · doi:10.1061/(ASCE)0733-9429(1997)123:12(1068)
[57] Lloyd PM, Stansby PK, Chen D (2001) Wake formation around islands in oscillatory laminar shallow water flows. Part 1. Experimental investigation. J Fluid Mech 429:217–238 · Zbl 0963.76508 · doi:10.1017/S0022112000002822
[58] Maronnier V, Picasso M, Rappaz J (1999) Numerical simulation of free surface flows. J Comput Phys 155:439–455 · Zbl 0952.76070 · doi:10.1006/jcph.1999.6346
[59] Menter FR (1993) Zonal two-equation k–{\(\omega\)} turbulence models for aerodynamic flows. AIAA paper 93-2906. In 24th fluid dynamics conference, 6–9 July 1993, Orlando, FL
[60] Miglio E, Quarteroni A, Saleri F (1999) Finite element approximation of quasi-3D shallow water equations. Comput Methods Appl Mech Eng 174:355–369 · Zbl 0958.76046 · doi:10.1016/S0045-7825(98)00304-1
[61] Minh-Duc B, Wenka T, Rodi W (2004) Numerical modeling of bed deformation in laboratory channels. J Hydraul Eng 130(9):894–904 · doi:10.1061/(ASCE)0733-9429(2004)130:9(894)
[62] Molls T, Chaudhry MH (1995) Depth-averaged open-channel flow model. J Hydraul Eng 121(6):453–465 · doi:10.1061/(ASCE)0733-9429(1995)121:6(453)
[63] Nichols BD, Hirt CW (1973) Calculating three-dimensional free surface flows in the vicinity of submerged and exposed structures. J Comput Phys 12:234–246 · Zbl 0258.76016 · doi:10.1016/S0021-9991(73)80013-0
[64] Nichols BD, Hirt CW (1975) Methods for calculating multidimensional, transient free surface flows past bodies. In: Proc 1st int conf on numer ship hydrodyn, Gaithersburg, MD
[65] Olsen NRB (1999) Two-dimensional numerical modelling of flushing processes in water reservoirs. J Hydraul Res 37(1):3–16 · doi:10.1080/00221689909498529
[66] Olsen NRB, Kjellesvig HM (1998) Three-dimensional numerical flow modelling for estimation of spillway capacity. J Hydraul Res 36(5):775–784 · doi:10.1080/00221689809498602
[67] Olsen NRB, Melaaen MC (1998) Three-dimensional calculation of scour around cylinders. J Hydraul Eng 119(9):1049–1054
[68] Peltier E, Duplex J, Latteux B, Pechon P, Chausson P (1991) Finite element model for bed-load transport and morphological evolution. Comput Model Ocean Eng 91
[69] Pena L, Cea L, Puertas J (2004) Turbulent flow: an experimental analysis in vertical slot fishways. In: Fifth international symposium on ecohydraulics, Madrid, Spain, IAHR, pp 881–888
[70] Playán E, Walker WR, Merkley GP (1994) Two-dimensional simulation of basin irrigation I: theory. J Irrig Drain Eng 120(5):837–856 · doi:10.1061/(ASCE)0733-9437(1994)120:5(837)
[71] Pope (1975) A more general effective-viscosity hypothesis. J Fluid Mech 472:331–340 · Zbl 0315.76024 · doi:10.1017/S0022112075003382
[72] Puertas J, Pena L, Teijeiro T (2004) An experimental approach to the hydraulics of vertical slot fishways. J Hydraul Eng 130(1):10–23 · doi:10.1061/(ASCE)0733-9429(2004)130:1(10)
[73] Rajaratnam N, Katopodis C, Solanski S (1992) New designs for vertical slot fishways. Can J Civ Eng 19(3):402–414 · doi:10.1139/l92-049
[74] Rajaratnam N, van der Vinne G, Katopodis C (1986) Hydraulics of vertical slot fishways. J Hydraul Eng 112(10):909–927 · doi:10.1061/(ASCE)0733-9429(1986)112:10(909)
[75] Rameshwaran P, Shiono K (2003) Computer modelling of two-stage meandering channel flows. Water Marit Eng 156(4):325–339 · doi:10.1680/wame.2003.156.4.325
[76] Rastogi AK, Rodi W (1978) Predictions of heat and mass transfer in open channels. J Hydraul Div HY 3:397–420
[77] Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540 · doi:10.1061/(ASCE)0733-9429(1998)124:5(530)
[78] Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141:112–152 · Zbl 0933.76069 · doi:10.1006/jcph.1998.5906
[79] Rodi W (1976) A new algebraic relation for calculating the Reynolds stresses. Z Angew Math Mech 56:219–221 · Zbl 0368.15006 · doi:10.1002/zamm.19760560510
[80] Roe PL (1986) Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J Comput Phys 63:458–476 · Zbl 0587.76126 · doi:10.1016/0021-9991(86)90204-4
[81] Sauvaget P, David E, Soares CG (2000) Modelling tidal currents on the coast of Portugal. Coast Eng 40:393–409 · doi:10.1016/S0378-3839(00)00020-X
[82] Scardovelli R, Zaleski S (1999) Direct numerical simulation of free surface and interfacial flows. Annu Rev Fluid Mech 31:567–603 · doi:10.1146/annurev.fluid.31.1.567
[83] Sleigh PA, Gaskell PH, Berzins M, Wright NG (1998) An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Comput Fluids 27(4):479–508 · Zbl 0964.76051 · doi:10.1016/S0045-7930(97)00071-6
[84] Stansby PK (1997) Semi-implicit finite volume shallow-water flow and solute transport solver with k–{\(\epsilon\)} turbulence model. Int J Numer Methods Fluids 25:285–313 · Zbl 0947.76059 · doi:10.1002/(SICI)1097-0363(19970815)25:3<285::AID-FLD552>3.0.CO;2-Q
[85] Stansby PK, Lloyd PM (2001) Wake formation around islands in oscillatory laminar shallow-water flows. Part 2. Three-dimensional boundary-layer modelling. J Fluid Mech 429:239–254 · Zbl 0969.76024 · doi:10.1017/S0022112000002834
[86] Thomas FO, Goldschmidt VW (1986) Structural characteristics of developing turbulent planar jet. J Fluid Mech 63:227–256 · doi:10.1017/S0022112086002288
[87] Toro EF (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, New York
[88] Toro EF (2001) Shock-capturing methods for free-surface shallow flows. Wiley, Chichester · Zbl 0996.76003
[89] Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi N, Tauber W, Nas JHS, Yan YJ (2001) A front tracking method for the computations of multiphase flow. J Comput Phys 169:708–759 · Zbl 1047.76574 · doi:10.1006/jcph.2001.6726
[90] Uijttewaal WSJ, Booij R (2000) Effects of shallowness on the development of free-surface mixing layers. Phys Fluids 12(2):392–402 · Zbl 1149.76575 · doi:10.1063/1.870317
[91] Uijttewaal WSJ, Girka GH (2003) Grid turbulence in shallow flows. J Fluid Mech 489:325–344 · Zbl 1094.76023 · doi:10.1017/S0022112003005020
[92] Uijttewaal WSJ, Tukker J (1998) Development of quasi two-dimensional structures in a shallow free-surface mixing layer. Exp Fluids 24:192–200 · doi:10.1007/s003480050166
[93] Uittenbogaard R, van Vossen B (2001) 2D-DNS of quasi-2D turbulence in shallow water. In: 3rd AFOSR international conference on direct numerical simulation and large eddy simulation (TAICDL), University of Texas at Arlington
[94] van Prooijen BC, Booij R, Uijttewaal WSJ (2000) Measurement and analysis methods of large scale horizontal coherent structures in a wide shallow channel. In: 10th international symposium on applications of laser techniques to fluid mechanics. Calouste Gulbenkian Foundation, Lisbon
[95] Vázquez-Cendón ME (1996) An efficient upwind scheme with finite volumes of the edge-type for the bidimensional shallow water equations. In: Benkhanldoun F, Vilsmeier R (eds) Finite volumes for complex applications. Problems and perspectives. Hermes, Paris, pp 605–612
[96] Vázquez-Cendón ME (1999) Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J Comput Phys 148:497–526 · Zbl 0931.76055 · doi:10.1006/jcph.1998.6127
[97] Wilson CAME, Bates PD, Hervouet JM (2002) Comparison of turbulence models for stage-discharge rating curve prediction in reach-scale compound channel flows using two-dimensional finite element methods. J Hydrol 257:42–58 · doi:10.1016/S0022-1694(01)00553-4
[98] Winterwerp JC, Wang ZB, van Kester ATM, Verweij JF (2002) Far-field impact of water injection dredging in the Crouch River. Water Marit Eng 154(4):285–296 · doi:10.1680/wame.2002.154.4.285
[99] Wolanski E, Imberger J, Heron ML (1984) Island wakes in shallow coastal waters. J Geophys Res 89:10553–10569 · doi:10.1029/JC089iC06p10553
[100] Wu W (2004) Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. J Hydraul Eng 130(10):1013–1024 · doi:10.1061/(ASCE)0733-9429(2004)130:10(1013)
[101] Wu W, Rodi W, Wenka T (2000) 3D numerical modeling of flow and sediment transport in open channels. J Hydraul Eng 126(1):4–15 · doi:10.1061/(ASCE)0733-9429(2000)126:1(4)
[102] Ye J, McCorquodale JA (1997) Depth-averaged hydrodynamic model in curvilinear collocated grid. J Hydraul Eng 123(5):380–388 · doi:10.1061/(ASCE)0733-9429(1997)123:5(380)
[103] Yoon TH (2004) Finite volume model for two-dimensional shallow water flows on unstructured grids. J Hydraul Eng 130(7):678–688 · doi:10.1061/(ASCE)0733-9429(2004)130:7(678)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.