×

On the specification property and synchronization of unique \(q\)-expansions. (English) Zbl 1477.37019

Summary: Given a positive integer \(M\) and \(q\in (1,M+1]\) we consider expansions in base \(q\) for real numbers \(x\in [0,M/{q-1}]\) over the alphabet \(\{0,\dots,M\}\). In particular, we study some dynamical properties of the natural occurring subshift \((\boldsymbol{V}_q,\sigma)\) related to unique expansions in such base \(q\). We characterize the set of \(q\in\mathcal{V}\subset (1,M+1]\) such that \((\boldsymbol{V}_q,\sigma)\) has the specification property and the set of \(q\in\mathcal{V}\) such that \((\boldsymbol{V}_q,\sigma)\) is a synchronized subshift. Such properties are studied by analysing the combinatorial and dynamical properties of the quasi-greedy expansion of \(q\). We also calculate the size of such classes as subsets of \(\mathcal{V}\) giving similar results to those shown by F. Blanchard in [Theor. Comput. Sci. 65, No. 2, 131–141 (1989; Zbl 0682.68081)] and J. Schmeling in [Ergodic Theory Dyn. Syst. 17, No. 3, 675–694 (1997; Zbl 0908.58017)] in the context of \(\beta\)-transformations.

MSC:

37B10 Symbolic dynamics
37B51 Multidimensional shifts of finite type
37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
11A63 Radix representation; digital problems
37B40 Topological entropy
37C45 Dimension theory of smooth dynamical systems
68R15 Combinatorics on words

References:

[1] Alcaraz Barrera, R.. Topological and ergodic properties of symmetric sub-shifts. Discrete Contin. Dyn. Syst.34(11) (2014), 4459-4486. · Zbl 1351.37051
[2] Alcaraz Barrera, R., Baker, S. and Kong, D.. Entropy, topological transitivity, and dimensional properties of unique \(q\) -expansions. Trans. Amer. Math. Soc.371(5) (2019), 3209-3258. · Zbl 1435.11016
[3] Allaart, P. and Kong, D.. On the continuity of the Hausdorff dimension of the univoque set. Adv. Math.354 (2019), 106729. · Zbl 1473.11015
[4] Allaart, P. C.. On univoque and strongly univoque sets. Adv. Math.308 (2017), 575-598. · Zbl 1362.11074
[5] Allouche, J., Clarke, M. and Sidorov, N.. Periodic unique beta-expansions: the Sharkovskǐ ordering. Ergod. Th. & Dynam. Sys.29(4) (2009), 1055-1074. · Zbl 1279.11009
[6] Baiocchi, C. and Komornik, V.. Greedy and quasi-greedy expansions in non-integer bases. Preprint, 2007, https://arxiv.org/pdf/0710.3001.pdf.
[7] Baker, S.. Generalized golden ratios over integer alphabets. Integers14 (2014), paper a15, 28. · Zbl 1285.11049
[8] Baker, S. and Ghenciu, A. E.. Dynamical properties of \(S\) -gap shifts and other shift spaces. J. Math. Anal. Appl.430(2) (2015), 633-647. · Zbl 1371.37022
[9] Bertrand-Mathis, A.. Développement en base \(\theta \) ; répartition modulo un de la suite \({(x{\theta}^n)}_{n\ge 0}\) ; langages codés et \(\theta \) -shift. Bull. Soc. Math. France114(3) (1986), 271-323. · Zbl 0628.58024
[10] Blanchard, F.. \( \beta \) -expansions and symbolic dynamics. Theoret. Comput. Sci.65(2) (1989), 131-141. · Zbl 0682.68081
[11] Boyle, M.. Algebraic aspects of symbolic dynamics. Topics in Symbolic Dynamics and Applications (Temuco, 1997)(London Mathematical Society Lecture Note Series, 279). Cambridge University Press, Cambridge, 2000, pp. 57-88. · Zbl 0967.37008
[12] Allaart, P. C.. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete Contin. Dyn. Syst.39(11) (2019), 6507-6522. · Zbl 1473.11014
[13] Daróczy, Z. and Kátai, I.. On the structure of univoque numbers. Publ. Math. Debrecen46(3-4) (1995), 385-408. · Zbl 0874.11013
[14] De Vries, M. and Komornik, V.. Unique expansions of real numbers. Adv. Math.221(2) (2009), 390-427. · Zbl 1166.11007
[15] De Vries, M., Komornik, V. and Loreti, P.. Topology of the set of univoque bases. Topology Appl.205 (2016), 117-137. The Pisot Substitution Conjecture. · Zbl 1362.11010
[16] Erdős, P. and Joó, I.. On the number of expansions \(1=\sum{q}^{-{n}_i} \). Ann. Univ. Sci. Budapest. Eötvös Sect. Math.35 (1992), 129-132. · Zbl 0805.11011
[17] Erdős, P., Joó, I. and Komornik, V.. Characterization of the unique expansions \(1={\sum}_{i=1}^{\infty }{q}^{-{n}_i}\) and related problems. Bull. Soc. Math. France118(3) (1990), 377-390. · Zbl 0721.11005
[18] Falconer, K.. Fractal Geometry: Mathematical Foundations and Applications. John Wiley, Chichester, 1990. · Zbl 0689.28003
[19] Faller, B. and Pfister, C.-E.. A point is normal for almost all maps \(\beta\text{x}+\alpha mod1\) or generalized \(\beta \) -transformations. Ergod. Th. & Dynam. Sys.29(5) (2009), 1529-1547. · Zbl 1184.37034
[20] Fiebig, D. and Fiebig, U.. Invariants for subshifts via nested sequences of shifts of finite type. Ergod. Th. & Dynam. Sys.21(6) (2001), 1731-1758. · Zbl 1021.37006
[21] García-Ramos, F. and Pavlov, R.. Extender sets and measures of maximal entropy for subshifts. J. Lond. Math. Soc. (2)100(3) (2019), 1013-1033. · Zbl 1450.37011
[22] Ge, Y. and Tan, B.. Periodicity of the univoque \(\beta \) -expansions. Acta Math. Sci. Ser. B (Engl. Ed.)37(1) (2017), 33-46. · Zbl 1389.11017
[23] Kalle, C., Kong, D., Li, W. and Lü, F.. On the bifurcation set of unique expansions. Acta Arith.188(4) (2019), 367-399. · Zbl 1441.11018
[24] Kalle, C. and Steiner, W.. Beta-expansions, natural extensions and multiple tilings associated with Pisot units. Trans. Amer. Math. Soc.364(5) (2012), 2281-2318. · Zbl 1295.11010
[25] Komornik, V.. Expansions in noninteger bases. Integers11B (2011), paper a9, 30. · Zbl 1301.11008
[26] Komornik, V., Kong, D. and Li, W.. Hausdorff dimension of univoque sets and devil’s staircase. Adv. Math.305 (2017), 165-196. · Zbl 1362.11075
[27] Komornik, V. and Loreti, P.. Subexpansions, superexpansions and uniqueness properties in non-integer bases. Period. Math. Hungar.44(2) (2002), 197-218. · Zbl 1017.11008
[28] Komornik, V. and Loreti, P.. On the topological structure of univoque sets. J. Number Theory122(1) (2007), 157-183. · Zbl 1111.11005
[29] Kong, D. and Li, W.. Hausdorff dimension of unique beta expansions. Nonlinearity28(1) (2015), 187-209. · Zbl 1346.37011
[30] Krieger, W.. On Subshifts and Topological Markov Chains. Springer US, Boston, MA, 2000, pp. 453-472. · Zbl 0957.60073
[31] Kwietniak, D., Ła̧Cka, M. and Oprocha, P.. A panorama of specification-like properties and their consequences. Dynamics and Numbers(Contemporary Mathematics, 669). American Mathematical Society, Providence, RI, 2016, pp. 155-186. · Zbl 1376.37024
[32] Li, B., Sahlsten, T. and Samuel, T.. Intermediate \(\beta \) -shifts of finite type. Discrete Contin. Dyn. Syst.36(1) (2016), 323-344. · Zbl 1371.37023
[33] Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge, 1995. · Zbl 1106.37301
[34] Parry, W.. On the \(\beta \) -expansions of real numbers. Acta Math. Acad. Sci. Hungar.11 (1960), 401-416. · Zbl 0099.28103
[35] Rényi, A.. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar.8 (1957), 477-493. · Zbl 0079.08901
[36] Schmeling, J.. Symbolic dynamics for \(\beta \) -shifts and self-normal numbers. Ergod. Th. & Dynam. Sys.176 (1997), 675-694. · Zbl 0908.58017
[37] Sidorov, N.. Almost every number has a continuum of \(\beta \) -expansions. Amer. Math. Monthly110(9) (2003), 838-842. · Zbl 1049.11085
[38] Sidorov, N.. Arithmetic dynamics. Topics in Dynamics and Ergodic Theory(London Mathematical Society Lecture Note Series, 310). Cambridge University Press, Cambridge, 2003, pp. 145-189. · Zbl 1051.37007
[39] Sidorov, N.. Expansions in non-integer bases: lower, middle and top orders. J. Number Theory129(4) (2009), 741-754. · Zbl 1230.11090
[40] Urbański, M.. Invariant subsets of expanding mappings of the circleErgod. Th. & Dynam. Sys.7(4) (1987), 627-645. · Zbl 0653.58031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.