×

Periodic unique beta-expansions: the Sharkovskiĭ ordering. (English) Zbl 1279.11009

Summary: Let \(\beta\in (1,2)\). Each \(x\in [0,\frac 1{\beta-1}]\) can be represented in the form \(x=\sum_{k=1}^\infty \varepsilon_k\beta^{-k}\), where \(\varepsilon_k\in\{0,1\}\) for all \(k\) (a \(\beta\)-expansion of \(x\)). If \(\beta>\frac{1+\sqrt 5}{2}\), then, as is well known, there always exist \(x\in (0,\frac 1{\beta-1})\) which have a unique \(\beta\)-expansion.
In the present paper we study (purely) periodic unique \(\beta\)-expansions and show that for each \(n\geq 2\) there exists \(\beta_n\in [\frac{1+\sqrt 5}{2},2)\) such that there are no unique periodic \(\beta\)-expansions of smallest period \(n\) for \(\beta\leq \beta_n\) and at least one such expansion for \(\beta>\beta_n\).
Furthermore, we prove that \(\beta_k<\beta_m\) if and only if \(k\) is less than \(m\) in the sense of the Sharkovskiĭ ordering. We give two proofs of this result, one of which is independent, and the other one links it to the dynamics of a family of trapezoidal maps.

MSC:

11A63 Radix representation; digital problems
37E05 Dynamical systems involving maps of the interval
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics

References:

[1] DOI: 10.1007/BF02020954 · Zbl 0099.28103 · doi:10.1007/BF02020954
[2] Sharkovskiĭ, Ukranian Math. Z. 16 pp 61– (1964)
[3] DOI: 10.1307/mmj/1028998766 · Zbl 0106.02204 · doi:10.1307/mmj/1028998766
[4] Louck, Symbolic Dynamics of Trapezoidal Maps (1986) · doi:10.1007/978-94-009-4610-1
[5] Daróczy, Publ. Math. Debrecen 42 pp 397– (1993)
[6] DOI: 10.2307/2589246 · Zbl 0918.11006 · doi:10.2307/2589246
[7] Cosnard, Ann. Inst. Fourier 35 pp 59– (1985) · Zbl 0569.58004 · doi:10.5802/aif.1019
[8] Glendinning, Math. Res. Lett. 8 pp 535– (2001) · Zbl 1002.11009 · doi:10.4310/MRL.2001.v8.n4.a12
[9] Erdos, Bull. Soc. Math. France 118 pp 377– (1990)
[10] Allouche, Sequences and Their Applications: Proceedings of SETA ’98 pp 1– (1999) · doi:10.1007/978-1-4471-0551-0_1
[11] Devaney, An Introduction to Chaotic Dynamical Systems (1989) · Zbl 0695.58002
[12] DOI: 10.1023/A:1010667918943 · Zbl 1012.11007 · doi:10.1023/A:1010667918943
[13] Daróczy, Publ. Math. Debrecen 46 pp 385– (1995)
[14] DOI: 10.2307/2695302 · Zbl 0997.11052 · doi:10.2307/2695302
[15] Allouche, C. R. Acad. Sci. Paris, Série I 296 pp 159– (1983)
[16] DOI: 10.1088/0951-7715/20/5/013 · Zbl 1122.60066 · doi:10.1088/0951-7715/20/5/013
[17] DOI: 10.2307/3647804 · Zbl 1049.11085 · doi:10.2307/3647804
[18] Milnor, Dynamical Systems (College Park, MD, 1986–1987) pp 465– (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.