×

Unique expansions of real numbers. (English) Zbl 1166.11007

P. Erdős, M. Horváth and I. Joó [Acta Math. Hung. 58, No. 3–4, 333–342 (1991; Zbl 0747.11005)] discovered continuum many real numbers \(1<q(<2)\) for which only one sequence \((c_i)=c_1 c_2\dots\) of integers \(c_i\in[0,q)\) satisfies the equality \(\sum_{i=1}^\infty c_i q^{-i}=1\). The set \(\mathcal U\) of such univoque numbers \(q>1\) has a rich topological structure, and its study revealed a number of unexpected connections with measure theory, fractals, ergodic theory and Diophantine approximation.
In this paper the authors introduce for any fixed real number \(q>1\), the set \(\mathcal U_q\) of real numbers \(x\) for which exactly one sequence \((c_i)\) of integers \(c_i\in[0,q)\) satisfies the equality \(\sum_{i=1}^\infty c_i q^{-i}=x\). The purpose of this paper is to give a complete topological description of the sets \(\mathcal U_q\). The authors characterize their closures and determine those bases \(q\) for which \(\mathcal U_q\) is closed or even a Cantor set. They also study the set \(\mathcal U'_q\) consisting of all sequences \((c_i)\) of integers \(c_i\in[0,q)\) such that \(\sum_{i=1}^\infty c_i q^{-i}\in\mathcal U_q\). They determine the number \(r>1\) for which the map \(q\mapsto\mathcal U'_q\) (defined on \((1,\infty)\)) is constant in a neighborhood of \(r\) and the number \(q>1\) for which \(\mathcal U'_q\) is a subshift or a subshift of finite type.

MSC:

11A63 Radix representation; digital problems
11B83 Special sequences and polynomials
37B10 Symbolic dynamics

Citations:

Zbl 0747.11005

References:

[1] Allouche, J.-P.; Cosnard, M., The Komornik-Loreti constant is transcendental, Amer. Math. Monthly, 107, 5, 448-449 (2000) · Zbl 0997.11052
[2] Baiocchi, C.; Komornik, V., Greedy and quasi-greedy expansions in non-integer bases · Zbl 1399.11026
[3] Borwein, P.; Hare, K. G., Some computations on the spectra of Pisot and Salem numbers, Math. Comp., 71, 238, 767-780 (2002) · Zbl 1037.11065
[4] Borwein, P.; Hare, K. G., General forms for minimal spectral values for a class of quadratic Pisot numbers, Bull. London Math. Soc., 35, 1, 47-54 (2003) · Zbl 1094.11038
[5] Dajani, K.; de Vries, M., Invariant densities for random \(β\)-expansions, J. Eur. Math. Soc., 9, 1, 157-176 (2007) · Zbl 1117.28012
[6] Daróczy, Z.; Kátai, I., Univoque sequences, Publ. Math. Debrecen, 42, 3-4, 397-407 (1993) · Zbl 0809.11008
[7] Daróczy, Z.; Kátai, I., On the structure of univoque numbers, Publ. Math. Debrecen, 46, 3-4, 385-408 (1995) · Zbl 0874.11013
[8] de Vries, M., A property of algebraic univoque numbers, Acta Math. Hungar., 119, 1-2, 57-62 (2008) · Zbl 1164.11008
[9] de Vries, M., On the number of unique expansions in non-integer bases, Topology Appl., 156, 3, 652-657 (2009) · Zbl 1160.11002
[10] Erdős, P.; Horváth, M.; Joó, I., On the uniqueness of the expansions \(1 = \sum q^{- n_i}\), Acta Math. Hungar., 58, 3-4, 333-342 (1991) · Zbl 0747.11005
[11] Erdős, P.; Joó, I.; Komornik, V., Characterization of the unique expansions \(1 = \sum_{i = 1}^\infty q^{- n_i}\) and related problems, Bull. Soc. Math. France, 118, 3, 377-390 (1990) · Zbl 0721.11005
[12] Erdős, P.; Joó, I.; Komornik, V., On the number of \(q\)-expansions, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 37, 109-118 (1994) · Zbl 0824.11005
[13] Erdős, P.; Joó, I.; Komornik, V., On the sequence of numbers of the form \(\varepsilon_0 + \varepsilon_1 q + \cdots + \varepsilon_n q^n, \varepsilon_i \in \{0, 1 \}\), Acta Arith., 83, 3, 201-210 (1998) · Zbl 0896.11006
[14] Erdős, P.; Komornik, V., Developments in non-integer bases, Acta Math. Hungar., 79, 1-2, 57-83 (1998) · Zbl 0906.11008
[15] Frougny, Ch.; Solomyak, B., Finite beta-expansions, Ergodic Theory Dynam. Systems, 12, 4, 713-723 (1992) · Zbl 0814.68065
[16] Glendinning, P.; Sidorov, N., Unique representations of real numbers in non-integer bases, Math. Res. Lett., 8, 4, 535-543 (2001) · Zbl 1002.11009
[17] Kallós, G., The structure of the univoque set in the small case, Publ. Math. Debrecen, 54, 1-2, 153-164 (1999) · Zbl 0968.11030
[18] Kallós, G., The structure of the univoque set in the big case, Publ. Math. Debrecen, 59, 3-4, 471-489 (2001) · Zbl 0996.11009
[19] Kátai, I.; Kallós, G., On the set for which 1 is univoque, Publ. Math. Debrecen, 58, 4, 743-750 (2001) · Zbl 0980.11009
[20] Komatsu, T., An approximation property of quadratic irrationals, Bull. Soc. Math. France, 130, 1, 35-48 (2002) · Zbl 1027.11047
[21] Komornik, V.; Loreti, P., Unique developments in non-integer bases, Amer. Math. Monthly, 105, 7, 636-639 (1998) · Zbl 0918.11006
[22] Komornik, V.; Loreti, P., Subexpansions, superexpansions and uniqueness properties in non-integer bases, Period. Math. Hungar., 44, 2, 195-216 (2002) · Zbl 1017.11008
[23] Komornik, V.; Loreti, P., On the topological structure of univoque sets, J. Number Theory, 122, 1, 157-183 (2007) · Zbl 1111.11005
[24] Komornik, V.; Loreti, P.; Pedicini, M., An approximation property of Pisot numbers, J. Number Theory, 80, 2, 218-237 (2000) · Zbl 0962.11034
[25] Komornik, V.; Loreti, P.; Pethő, A., The smallest univoque number is not isolated, Publ. Math. Debrecen, 62, 3-4, 429-435 (2003) · Zbl 1026.11016
[26] Lind, D.; Marcus, B., An Introduction to Symbolic Dynamics and Coding (1995), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1106.37301
[27] Parry, W., On the \(β\)-expansions of real numbers, Acta Math. Acad. Sci. Hungar., 11, 401-416 (1960) · Zbl 0099.28103
[28] Pethő, A.; Tichy, R., On digit expansions with respect to linear recurrences, J. Number Theory, 33, 2, 243-256 (1989) · Zbl 0676.10010
[29] Rényi, A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8, 477-493 (1957) · Zbl 0079.08901
[30] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., 12, 4, 269-278 (1980) · Zbl 0494.10040
[31] Sidorov, N., Universal \(β\)-expansions, Period. Math. Hungar., 47, 1-2, 221-231 (2003) · Zbl 1049.11009
[32] Sidorov, N., Almost every number has a continuum of \(β\)-expansions, Amer. Math. Monthly, 110, 9, 838-842 (2003) · Zbl 1049.11085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.