×

On the configuration of the singular fibers of jet schemes of rational double points. (English) Zbl 1482.14041

Summary: To each variety \(X\) and a nonnegative integer \(m\), there is a space \(X_m\) over \(X\), called the jet scheme of \(X\) of order \(m\), parametrizing \(m\)-th jets on \(X\). Its fiber over a singular point of \(X\) is called a singular fiber. For a surface with a rational double point, Mourtada gave a one-to-one correspondence between the irreducible components of the singular fiber of \(X_m\) and the exceptional curves of the minimal resolution of \(X\) for \(m \gg 0\). In this article, for a surface \(X\) over \(\mathbb{C}\) with a singularity of \(A_n\) or \(D_4\)-type, we study the intersections of irreducible components of the singular fiber and construct a graph using this information. The vertices of the graph correspond to irreducible components of the singular fiber and two vertices are connected when the intersection of the corresponding components is maximal for the inclusion relation. In the case of \(A_n\) or \(D_4\)-type singularity, we show that this graph is isomorphic to the resolution graph for \(m \gg 0\).

MSC:

14J17 Singularities of surfaces or higher-dimensional varieties
14B05 Singularities in algebraic geometry

References:

[1] de Bobadilla, J. F.; Pereira, M. P., The Nash problem for surfaces, Ann. Math, 176 (2012) · Zbl 1264.14049 · doi:10.4007/annals.2012.176.3.11
[2] Ishii, S., Geometric properties of jet schemes, Commun. Algebra, 39, 5, 1872-1882 (2011) · Zbl 1230.14052 · doi:10.1080/00927872.2010.480954
[3] Leyton-Alvarez, M., Résolution du problème des arcs de Nash pour une famille d’hypersurfaces quasi-rationnelles, Ann. Fac. Sci. Toulouse Math, 20, 3, 613-667 (2011) · Zbl 1244.14004 · doi:10.5802/afst.1320
[4] Mourtada, H., Jet schemes of normal toric surfaces, Bull. Soc. Math. France, 145, 2, 237-266 (2017) · Zbl 1401.14024
[5] Mourtada, H., Jet schemes of rational double point singularities, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 373-388 (2014) · Zbl 1312.14047
[6] Mourtada, H.; Plénat, C., Jet schemes and minimal toric embedded resolutions of rational double point singularities, Commun. Algebra, 46, 3, 1314-1332 (2018) · Zbl 1393.14014 · doi:10.1080/00927872.2017.1344695
[7] Mustaţǎ, M., Jet schemes of locally complete intersection canonical singularities, Invent. Math, 145, 3, 397-424 (2001) · Zbl 1091.14004
[8] Nash, J. F., Arc structure of singularities, Duke Math. J, 81, 1, 31-38 (1995) · Zbl 0880.14010 · doi:10.1215/S0012-7094-95-08103-4
[9] Pe Pereira, M., Nash problem for quotient surface singularities, J. Lond. Math. Soc, 87, 1, 177-203 (2013) · Zbl 1272.32027 · doi:10.1112/jlms/jds037
[10] Plénat, C., The Nash problem of arcs and the rational double points Dn, Ann. Inst. Fourier, 58, 7, 2249-2278 (2008) · Zbl 1168.14004 · doi:10.5802/aif.2413
[11] Plénat, C.; Spivakovsky, M., The Nash problem of arcs and the rational double point E_6, Kodai Math. J, 35, 1, 173-213 (2012) · Zbl 1271.14006 · doi:10.2996/kmj/1333027261
[12] Reguera, A., Arcs and wedges on rational surface singularities, C. R. Math. Acad. Sci. Paris, 349, 19-20, 1083-1087 (2011) · Zbl 1235.14006 · doi:10.1016/j.crma.2011.08.022
[13] Reguera, A., Arcs and wedges on rational surface singularities, J. Algebra, 366, 126-164 (2012) · Zbl 1262.14043 · doi:10.1016/j.jalgebra.2012.05.009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.