×

Endoscopic character identities for metaplectic groups. (English) Zbl 1479.22015

The paper under review proves the endoscopic character identities for tempered representations of metaplectic groups \(Mp(2n)\) over a local field of characteristic zero as formulated by W. W. Li in [W. T. Gan and W.-W. Li, in: Geometric aspects of the trace formula. Proceedings of the Simons symposium, Schloss Elmau, Germany, April 10–16, 2016. Cham: Springer, 183–210 (2018; Zbl 1453.11065)]. The formulation relies on the local Langlands correspondence for \(Mp(2n)\), which has been established using theta correspondence by Adams-Barbasch in the archimedean case and Gan-Savin in the \(p\)-adic case. In the archimedean case, the endosopic character identities of \(Mp(2n)\) have been proved by D. Renard in a different form [ Am. J. Math. 121, No. 6, 1215–1243 (1999; Zbl 0942.22010)] and the author gives a reinterpretation of that result. In the nonarchimedean case the author uses a local-global argument with key inputs from the W. W. Li’s simple stable trace formula of \(Mp(2n)\), Gan-Ichino’s multiplicity formula for the tempered discrete spectrum of \(Mp(2n)\) and Arthur’s stable multiplicity formula for special odd orthogonal groups.
Reviewer: Bin Xu (Beijing)

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
11F70 Representation-theoretic methods; automorphic representations over local and global fields

References:

[1] J. Adams, Genuine representations of the metaplectic group and epsilon factors, Proceedings of the International Congress of Mathematicians. Vol. 1, 2 (Zürich 1994), Birkhäuser, Basel (1995), 721-731. · Zbl 0857.11023
[2] J. Adams, Lifting of characters on orthogonal and metaplectic groups, Duke Math. J. 92 (1998), no. 1, 129-178. · Zbl 0983.11025
[3] J. Adams, Discrete series and characters of the component group, On the stabilization of the trace formula, Stab. Trace Formula Shimura Var. Arith. Appl. 1, International Press, Somerville (2011), 369-387. · Zbl 1255.11027
[4] J. Adams and D. Barbasch, Genuine representations of the metaplectic group, Compos. Math. 113 (1998), no. 1, 23-66. · Zbl 0913.11022
[5] J. Adams, D. Barbasch and D. A. Vogan, Jr., The Langlands classification and irreducible characters for real reductive groups, Progr. Math. 104, Birkhäuser, Boston 1992. · Zbl 0756.22004
[6] J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math. Soc. 1 (1988), no. 3, 501-554. · Zbl 0667.10019
[7] J. Arthur, An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc. 4, American Mathematical Society, Providence (2005), 1-263. · Zbl 1152.11021
[8] J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, Amer. Math. Soc. Colloq. Publ. 61, American Mathematical Society, Providence 2013. · Zbl 1310.22014
[9] A. Borel, Automorphic L-functions, Automorphic forms, representations and L-functions (Corvallis 1977), Proc. Sympos. Pure Math. 33 Part 2, American Mathematical Society, Providence (1979), 27-61. · Zbl 0412.10017
[10] P.-S. Chan and W. T. Gan, The local Langlands conjecture for \rm GSp(4) III: Stability and twisted endoscopy, J. Number Theory 146 (2015), 69-133. · Zbl 1366.11074
[11] K. Choiy and D. Goldberg, Invariance of R-groups between p-adic inner forms of quasi-split classical groups, Trans. Amer. Math. Soc. 368 (2016), no. 2, 1387-1410. · Zbl 1335.22018
[12] W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, On the conjectures of Gross and Prasad. I, Astérisque 346, Société Mathématique de France, Paris (2012), 1-109. · Zbl 1280.22019
[13] W. T. Gan and A. Ichino, The Shimura-Waldspurger correspondence for \(\rm Mp}_{2n\), Ann. of Math. (2) 188 (2018), no. 3, 965-1016. · Zbl 1486.11076
[14] W. T. Gan and W.-W. Li, The Shimura-Waldspurger correspondence for {\rm Mp}(2n), Geometric aspects of the trace formula, Simons Symp., Springer, Cham (2018), 183-210. · Zbl 1453.11065
[15] W. T. Gan and G. Savin, Representations of metaplectic groups I: Epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), no. 6, 1655-1694. · Zbl 1325.11046
[16] D. Goldberg, Reducibility of induced representations for {\rmSp}(2n) and {\rmSO}(n), Amer. J. Math. 116 (1994), no. 5, 1101-1151. · Zbl 0851.22021
[17] B. H. Gross and D. Prasad, On the decomposition of a representation of \(\rm\text{SO}}_{n\) when restricted to \(\rm\text{SO}}_{n-1\), Canad. J. Math. 44 (1992), no. 5, 974-1002. · Zbl 0787.22018
[18] T. C. Hales, On the fundamental lemma for standard endoscopy: Reduction to unit elements, Canad. J. Math. 47 (1995), no. 5, 974-994. · Zbl 0840.22032
[19] T. K. Howard, Lifting of characters on p-adic orthogonal and metaplectic groups, Compos. Math. 146 (2010), no. 3, 795-810. · Zbl 1192.22008
[20] A. W. Knapp, Local Langlands correspondence: The Archimedean case, Motives (Seattle 1991), Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence (1994), 393-410. · Zbl 0811.11071
[21] R. E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365-399. · Zbl 0577.10028
[22] S. Kudla, Notes on the local theta correspondence, 1996, http://www.math.toronto.edu/skudla/castle.pdf.
[23] W.-W. Li, Transfert d’intégrales orbitales pour le groupe métaplectique, Compos. Math. 147 (2011), no. 2, 524-590. · Zbl 1216.22009
[24] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 5, 787-859. · Zbl 1330.11037
[25] W.-W. Li, Le lemme fondamental pondéré pour le groupe métaplectique, Canad. J. Math. 64 (2012), no. 3, 497-543. · Zbl 1273.11087
[26] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes III: Le développement spectral fin, Math. Ann. 356 (2013), no. 3, 1029-1064. · Zbl 1330.11038
[27] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin, J. reine angew. Math. 686 (2014), 37-109. · Zbl 1295.22027
[28] W.-W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. IV. Distributions invariantes, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 6, 2379-2448. · Zbl 1315.11041
[29] W.-W. Li, La formule des traces stable pour le groupe métaplectique: les termes elliptiques, Invent. Math. 202 (2015), no. 2, 743-838. · Zbl 1386.11074
[30] W.-W. Li, Spectral transfer for metaplectic groups. I. Local character relations, J. Inst. Math. Jussieu 18 (2019), no. 1, 25-123. · Zbl 1409.22014
[31] C. Luo, Spherical fundamental lemma for metaplectic groups, Canad. J. Math. 70 (2018), no. 4, 898-924. · Zbl 1402.22009
[32] C. Moeglin and D. Renard, Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-déployés, Relative aspects in representation theory, Langlands functoriality and automorphic forms, Lecture Notes in Math. 2221, Springer, Cham (2018), 341-361. · Zbl 1457.11063
[33] D. Renard, Endoscopy for {\rm Mp}(2n,{\mathbf{R}}), Amer. J. Math. 121 (1999), no. 6, 1215-1243. · Zbl 0942.22010
[34] J. P. Schultz, Lifting of characters of SL(2)({F}) and {SO}(1,2)({F}) for F a nonarchimedean local field, ProQuest LLC, Ann Arbor, 1998; Thesis (Ph.D.)-University of Maryland, College Park.
[35] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273-330. · Zbl 0780.22005
[36] S. W. Shin, Automorphic Plancherel density theorem, Israel J. Math. 192 (2012), no. 1, 83-120. · Zbl 1300.22006
[37] J.-L. Waldspurger, Correspondance de Shimura, J. Math. Pures Appl. (9) 59 (1980), no. 1, 1-132. · Zbl 0412.10019
[38] J.-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), no. 3, 219-307. · Zbl 0724.11026
[39] J.-L. Waldspurger, Intégrales orbitales nilpotentes et endoscopie pour les groupes classiques non ramifiés, Astérisque 269, Société Mathématique de France, Paris 2001. · Zbl 0965.22012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.