×

The trace formula for the coverings of connected reductive groups. IV: Invariant distributions. (La formule des traces pour les revêtements de groupes réductifs connexes. IV: Distributions invariantes.) (French. English summary) Zbl 1315.11041

This paper is the final part of the author’s impressive series [J. Reine Angew. Math. 686, 37–109 (2014; Zbl 1295.22027); Ann. Sci. Éc. Norm. Supér. (4) 45, No. 5, 787–859 (2012; Zbl 1330.11037); Math. Ann. 356, No. 3, 1029–1064 (2013; Zbl 1330.11038)], in which the invariant trace formula of Arthur is generalized to an \(m\)-fold central extension of \(G(\mathbb{A})\), where \(G\) is a connected reductive algebraic group defined over a number field \(F\), and \(\mathbb{A}\) is the ring of adèles of \(F\). The final formula in such generality is proved subject to the technical hypothesis that the invariant Paley-Wiener theorem holds at real places. For some important cases, such as central extensions of the general linear group \(\mathrm{GL}(n,\mathbb{R})\) and the metaplectic group, that is, the two-fold central extension of the symplectic group \(\mathrm{Sp}(2n,\mathbb{R})\), it is checked that the hypothesis holds.
The importance of the invariant trace formula is in that it is a step towards the stabilization of the trace formula, and the stable trace formula plays the key role in the endoscopic classification of automorphic representations [J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups. Colloquium Publications 61. Providence, RI: American Mathematical Society (2013; Zbl 1310.22014); C. P. Mok, Mem. Am. Math. Soc. 1108 (2015; Zbl 1316.22018)]. The generalization to finite central extensions of reductive groups is important, because they appear naturally in the arithmetic considerations, for instance, in modular forms of half-integral weight, theta correspondence, and multiple Dirichlet series.
The invariant trace formula for connected reductive groups over a number field is finally established in [J. Arthur, J. Am. Math. Soc. 1, No. 2, 323–383 (1988; Zbl 0682.10021), J. Am. Math. Soc. 1, No. 3, 501–554 (1988; Zbl 0667.10019)]. However, more recently, J. Arthur [J. Inst. Math. Jussieu 1, No. 2, 175–277 (2002; Zbl 1040.11038)] provided another approach to obtain the invariant trace formula with a view toward the stable trace formula. This latter approach is followed in the present paper and the serious obstacles of working with a central extension are overcome.

MSC:

11F72 Spectral theory; trace formulas (e.g., that of Selberg)
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings

References:

[1] Arthur, James, The trace formula in invariant form, Ann. of Math. (2), 114, 1, 1-74 (1981) · Zbl 0495.22006 · doi:10.2307/1971376
[2] Arthur, James, On a family of distributions obtained from Eisenstein series. II. Explicit formulas, Amer. J. Math., 104, 6, 1289-1336 (1982) · Zbl 0562.22004 · doi:10.2307/2374062
[3] Arthur, James, A measure on the unipotent variety, Canad. J. Math., 37, 6, 1237-1274 (1985) · Zbl 0589.22016 · doi:10.4153/CJM-1985-067-0
[4] Arthur, James, The invariant trace formula. I. Local theory, J. Amer. Math. Soc., 1, 2, 323-383 (1988) · Zbl 0682.10021 · doi:10.2307/1990920
[5] Arthur, James, The invariant trace formula. II. Global theory, J. Amer. Math. Soc., 1, 3, 501-554 (1988) · Zbl 0667.10019 · doi:10.1090/S0894-0347-1988-0939691-8
[6] Arthur, James, The local behaviour of weighted orbital integrals, Duke Math. J., 56, 2, 223-293 (1988) · Zbl 0649.10020 · doi:10.1215/S0012-7094-88-05612-8
[7] Arthur, James, Intertwining operators and residues. I. Weighted characters, J. Funct. Anal., 84, 1, 19-84 (1989) · Zbl 0679.22011 · doi:10.1016/0022-1236(89)90110-9
[8] Arthur, James, On the Fourier transforms of weighted orbital integrals, J. Reine Angew. Math., 452, 163-217 (1994) · Zbl 0795.43006
[9] Arthur, James, Canonical normalization of weighted characters and a transfer conjecture, C. R. Math. Acad. Sci. Soc. R. Can., 20, 2, 33-52 (1998) · Zbl 0906.11021
[10] Arthur, James, A stable trace formula. I. General expansions, J. Inst. Math. Jussieu, 1, 2, 175-277 (2002) · Zbl 1040.11038 · doi:10.1017/S1474-748002000051
[11] Bernstein, J.; Deligne, P.; Kazhdan, D., Trace Paley-Wiener theorem for reductive \(p\)-adic groups, J. Analyse Math., 47, 180-192 (1986) · Zbl 0634.22011 · doi:10.1007/BF02792538
[12] Brubaker, Benjamin; Bump, Daniel; Chinta, Gautam; Friedberg, Solomon; Hoffstein, Jeffrey, Multiple Dirichlet series, automorphic forms, and analytic number theory, 75, 91-114 (2006) · Zbl 1112.11025
[13] Bruhat, François, Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes \(\wp \)-adiques, Bull. Soc. Math. France, 89, 43-75 (1961) · Zbl 0128.35701
[14] Clozel, Laurent; Delorme, Patrick, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs, Invent. Math., 77, 3, 427-453 (1984) · Zbl 0584.22005 · doi:10.1007/BF01388832
[15] Clozel, Laurent; Delorme, Patrick, Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II, Ann. Sci. École Norm. Sup. (4), 23, 2, 193-228 (1990) · Zbl 0724.22012
[16] Finis, Tobias; Lapid, Erez; Müller, Werner, On the spectral side of Arthur’s trace formula—absolute convergence, Ann. of Math. (2), 174, 1, 173-195 (2011) · Zbl 1242.11036 · doi:10.4007/annals.2011.174.1.5
[17] Flicker, Yuval Z.; Kazhdan, David A., Metaplectic correspondence, Inst. Hautes Études Sci. Publ. Math., 64, 53-110 (1986) · Zbl 0616.10024 · doi:10.1007/BF02699192
[18] Huang, Jing-Song, The unitary dual of the universal covering group of \(\text{GL}(n,\mathbf{R})\), Duke Math. J., 61, 3, 705-745 (1990) · Zbl 0732.22010 · doi:10.1215/S0012-7094-90-06126-5
[19] Labesse, J.-P., Stable twisted trace formula : elliptic terms, J. Inst. Math. Jussieu, 3, 4, 473-530 (2004) · Zbl 1061.11025 · doi:10.1017/S1474748004000143
[20] Li, Wen-Wei, Transfert d’intégrales orbitales pour le groupe métaplectique, Compos. Math., 147, 2, 524-590 (2011) · Zbl 1216.22009 · doi:10.1112/S0010437X10004963
[21] Li, Wen-Wei, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale, Ann. Sci. Éc. Norm. Supér. (4), 45, 5, 787-859 (2013) (2012) · Zbl 1330.11037
[22] Li, Wen-Wei, La formule des traces pour les revêtements de groupes réductifs connexes III : Le développement spectral fin, Math. Ann., 356, 3, 1029-1064 (2013) · Zbl 1330.11038 · doi:10.1007/s00208-012-0867-0
[23] Li, Wen-Wei, La formule des traces pour les revêtements de groupes réductifs connexes. I. Le développement géométrique fin, J. Reine Angew. Math., 686, 37-109 (2014) · Zbl 1295.22027 · doi:10.1515/crelle-2012-0015
[24] Mezo, Paul, Comparisons of general linear groups and their metaplectic coverings. II, Represent. Theory, 5, 524-580 (electronic) (2001) · Zbl 1069.11019 · doi:10.1090/S1088-4165-01-00110-8
[25] Mezo, Paul, Comparisons of general linear groups and their metaplectic coverings. I, Canad. J. Math, 54, 92-137 (2002) · Zbl 1013.11021 · doi:10.4153/CJM-2002-005-0
[26] Schwartz, Laurent, Théorie des distributions (1966) · Zbl 0149.09501
[27] Trèves, François, Topological vector spaces, distributions and kernels (2006) · Zbl 1111.46001
[28] Vogan, David A. Jr., The algebraic structure of the representation of semisimple Lie groups. I, Ann. of Math. (2), 109, 1, 1-60 (1979) · Zbl 0424.22010 · doi:10.2307/1971266
[29] Vogan, David A. Jr., The unitary dual of GL(n) over an Archimedean field., Invent. Math., 83, 449-505 (1986) · Zbl 0598.22008 · doi:10.1007/BF01394418
[30] Weil, André, Sur certains groupes d’opérateurs unitaires, Acta Math., 111, 143-211 (1964) · Zbl 0203.03305 · doi:10.1007/BF02391012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.