×

Representations of metaplectic groups. I: Epsilon dichotomy and local Langlands correspondence. (English) Zbl 1325.11046

Let \(F\) denote a non-Archimedean local field of characteristic zero and let \(\operatorname{Irr}(G)\) stand for the set of isomorphism classes of irreducible (genuine) representations of \(G\). Let \(W\) denote a symplectic space of dimension \(2n\) over \(F\) and let \(\mathrm{Mp}(W)\) denote the associated metaplectic group. Also, let \(\psi\) stand for a nontrivial additive character of \(F\).
In the paper under review, the authors prove that there is a bijection \[ \Theta_{\psi} : \operatorname{Irr}(\mathrm{Mp}(W)) \leftrightarrow \operatorname{Irr}(\mathrm{SO}(V^{+})) \cup \operatorname{Irr}(\mathrm{SO}(V^{-})), \] where \(V^{+}\) (respectively, \(V^{-}\)) is the split (respectively, non-split) quadratic space of discriminant \(1\) and dimension \(2n+1\), while \(\mathrm{SO}(V^{+}\) (respectively, \(\mathrm{SO}(V^{-})\)) is the associated special orthogonal group. The bijection \(\Theta_{\psi}\) is given by the theta correspondence with respect to \(\psi\) for the group \(\mathrm{Mp}(W) \times \mathrm{SO}(V^{\pm})\).
This extends the results of J. L. Waldspurger [Prog. Math. 12, 357–369 (1981; Zbl 0454.10015); Forum Math. 3, No. 3, 219–307 (1991; Zbl 0724.11026)] for \(n=1\) and provides a classification of the irreducible representations of \(\mathrm{Mp}(W)\) in terms of those of the special orthogonal groups \(\mathrm{SO}(V^{+})\) and \(\mathrm{SO}(V^{-})\). Also, the authors determine a series of particularly interesting properties of this classification. We list some of them in what follows.
Let \(\pi \in \operatorname{Irr}(\mathrm{SO}(V))\) and \(\sigma \in \operatorname{Irr}(\mathrm{Mp}(W))\) correspond under \(\Theta_{\psi}\). Then the following hold:
\(\pi\) is a discrete series if and only if \(\sigma\) is a discrete series.
\(\pi\) is tempered if and only if \(\sigma\) is tempered.
If \(\pi\) and \(\sigma\) are discrete series, then the formal degrees of \(\pi\) and \(\sigma\), with respect to the appropriate Haar measures, coincide.
If \(\pi\) is a generic representation of \(\mathrm{SO}(V^{+})\) then \(\sigma\) is a \(\psi\)-generic representation of \(\mathrm{Mp}(W)\); if \(\sigma\) is \(\psi\)-generic and tempered, then \(\pi\) is generic.
If \(\rho\) is an irreducible representation of \(\mathrm{GL}(k,F)\) and \(\chi\) a \(1\)-dimensional character of \(\mathrm{GL}(1,F)\), then we have the following equalities of Plancherel measures, \(L\)-factors and \(\varepsilon\)-factors: \(\mu (s, \pi \times \rho, \psi) = \mu (s, \sigma \times \rho, \psi)\), \(L(s, \pi \times \chi) = L_{\psi}(s, \sigma \times \chi)\) and \(\varepsilon(s, \pi \times \chi, \psi)= \varepsilon(s, \sigma \times \chi, \psi)\). Additionally, if \(\pi\) is generic we have \(L(s, \pi \times \rho) = L_{\psi}(s, \sigma \times \rho)\) and \(\varepsilon(s, \pi \times \rho, \psi)= \varepsilon(s, \sigma \times \rho, \psi)\).
There are two extensions of \(\pi\) to \(\mathrm{O}(V)\), and we denote them by \(\pi^{+}\) and \(\pi^{-}\). Then \(\pi^{\varepsilon}\) participates in the theta correspondence with \(\mathrm{Mp}(W)\), with respect to \(\psi\), if and only if \(\varepsilon = \varepsilon(V) \cdot \varepsilon(1/2, \pi)\), where \(\varepsilon(V) = 1\) if \(V\) is split and \(\varepsilon(V) = -1\) if \(V\) is non-split.

MSC:

11F70 Representation-theoretic methods; automorphic representations over local and global fields
11F27 Theta series; Weil representation; theta correspondences
22E50 Representations of Lie and linear algebraic groups over local fields
Full Text: DOI

References:

[4] doi:10.2307/1971524 · Zbl 0780.22005 · doi:10.2307/1971524
[7] doi:10.1073/pnas.83.13.4589 · Zbl 0599.12012 · doi:10.1073/pnas.83.13.4589
[8] doi:10.4153/CMB-2000-014-5 · Zbl 0945.22005 · doi:10.4153/CMB-2000-014-5
[9] doi:10.1023/A:1000450504919 · Zbl 0913.11022 · doi:10.1023/A:1000450504919
[10] doi:10.1215/S0012-7094-00-10128-7 · Zbl 0955.22014 · doi:10.1215/S0012-7094-00-10128-7
[11] doi:10.1006/jfan.1995.1099 · Zbl 0841.22014 · doi:10.1006/jfan.1995.1099
[13] doi:10.1007/978-3-0348-9078-6_1 · doi:10.1007/978-3-0348-9078-6_1
[14] doi:10.1007/s11856-008-0022-5 · Zbl 1153.22020 · doi:10.1007/s11856-008-0022-5
[15] doi:10.1017/CBO9780511470905 · doi:10.1017/CBO9780511470905
[22] doi:10.1007/BF01388961 · Zbl 0583.22010 · doi:10.1007/BF01388961
[24] doi:10.1353/ajm.2011.0038 · Zbl 1228.22019 · doi:10.1353/ajm.2011.0038
[25] doi:10.1007/s00039-009-0040-4 · Zbl 1216.11057 · doi:10.1007/s00039-009-0040-4
[27] doi:10.1090/S0894-0347-96-00198-1 · Zbl 0870.11026 · doi:10.1090/S0894-0347-96-00198-1
[28] doi:10.4153/CJM-2011-015-6 · Zbl 1217.22014 · doi:10.4153/CJM-2011-015-6
[31] doi:10.1016/j.jalgebra.2009.07.001 · Zbl 1185.22013 · doi:10.1016/j.jalgebra.2009.07.001
[33] doi:10.4153/CJM-1992-060-8 · Zbl 0787.22018 · doi:10.4153/CJM-1992-060-8
[34] doi:10.1112/S0010437X10004744 · Zbl 1200.22010 · doi:10.1112/S0010437X10004744
[35] doi:10.4007/annals.2011.173.3.12 · Zbl 1230.11063 · doi:10.4007/annals.2011.173.3.12
[36] doi:10.1017/S1474748003000082 · Zbl 1029.22016 · doi:10.1017/S1474748003000082
[37] doi:10.1515/form.1991.3.219 · Zbl 0724.11026 · doi:10.1515/form.1991.3.219
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.