×

Logarithmic confidence intervals for the cross-product ratio of binomial proportions under different sampling schemes. (English) Zbl 07714530

Summary: We consider the problem of logarithmic interval estimation for a cross-product ratio \(\rho = \frac{p_1 (1-p_2)}{p_2 (1-p_1)}\) with data from two independent Bernoulli samples. Each sample may be obtained in the framework of direct or inverse Binomial sampling schemes. Asymptotic logarithmic confidence intervals are constructed under different types of sampling schemes, with parameter estimators demonstrating exponentially decreasing bias. Our goal is to investigate the cases when the relatively simple normal approximations for estimators of the cross-product ratio are reliable for constructing logarithmic confidence intervals. We use the closeness of the confidence coefficient to the nominal confidence level as our main evaluation criterion, and use the Monte-Carlo method to investigate the key probability characteristics of intervals corresponding to all possible combinations of sampling schemes. We present estimations of the coverage probability, expectation and standard deviation of interval widths in tables. Also, we provide some recommendations for applying each logarithmic interval obtained.

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Albert, J. H.; Gupta, A. K., Estimation in contingency tables using prior information, Journal of the Royal Statistical Society. Series B (Methodological), 45, 60-69 (1983) · Zbl 0526.62049 · doi:10.1111/j.2517-6161.1983.tb01231.x
[2] Amini, M.; Mahdizadeh, M., Nonparametric estimation of the entropy using a ranked set sample, Communications in Statistics - Simulation and Computation, 46, 6719-37 (2017) · Zbl 1391.94583 · doi:10.1080/03610918.2016.1208229
[3] Andĕl, J., On interactions in contingency tables, Aplikace Matematiky, 18, 99-109 (1973) · Zbl 0259.62051
[4] Baxter, P. D.; Marchant, P. R., The cross-product ratio in bivariate lognormal and gamma distributions, with an application to non-randomized trials, Journal of Applied Statistics, 37, 4, 529-36 (2010) · Zbl 1511.62107 · doi:10.1080/02664760902744962
[5] Cornfield, J., 4, A statistical problem arising from retrospective studies (1956), Berkeley, CA: University of California Press, Berkeley, CA · Zbl 0070.14707
[6] Gart, J. J., On the combination of relative risks, Biometrics, 18, 4, 601-10 (1962) · Zbl 0113.14003 · doi:10.2307/2527905
[7] Goodman, L. A., Simultaneous confidence limits for cross-product ratios in contingency tables, Journal of the Royal Statistical Society. Series B (Methodological), 26, 86-102 (1964) · Zbl 0129.32304 · doi:10.1111/j.2517-6161.1964.tb00543.x
[8] Holland, P. W.; Wang, Y. J., Dependence functions for Continuous bivariate densities, Communications in Statistics - Theory and Methods, 16, 863-76 (1987) · Zbl 0609.62092 · doi:10.1080/03610928708829408
[9] Lee, L.-F., Empirical Bayes estimators for the cross-product ratios for 2 × 2 contingency tables (1981), Virginia Polytechnic Institute and State University
[10] Lehmann, E. L., Elements of large sample theory (1997), New York: Springer-Verlag, New York
[11] Lin, C.-Y.; Yang, M.-C., Improved p-value tests for comparing two independent binomial proportions, Communications in Statistics - Simulation and Computation, 38, 78-91 (2008) · Zbl 1161.62007 · doi:10.1080/03610910802417812
[12] Mahdizadeh, M.; Arghami, N. R., Quantile estimation using ranked set samples from a population with known mean, Communications in Statistics - Simulation and Computation, 41, 1872-81 (2012) · Zbl 1270.62065 · doi:10.1080/03610918.2011.624236
[13] Martín Andrés, A.; Tapia García, J. M.; Gayá Moreno, F., Two-tailed asymptotic inferences for the odds ratio in cross-sectional studies: Evaluation of fifteen old and new methods of inference, Journal of Biopharmaceutical Statistics, 30, 900-915 (2020)
[14] McCann, M. H.; Tebbs, J. M., Simultaneous logit-based confidence intervals for odds ratios in \(####\) classification tables with a fixed reference level, Communications in Statistics - Simulation and Computation, 38, 961-75 (2009) · Zbl 1160.62332
[15] Ngamkham, T. (2018), University of Regina
[16] Ngamkham, T.; Volodin, A.; Volodin, I., Confidence intervals for a ratio of binomial proportions based on direct and inverse sampling schemes, Lobachevskii Journal of Mathematics, 37, 4, 466-96 (2016) · Zbl 1419.62055 · doi:10.1134/S1995080216040132
[17] Niebuhr, T.; Trabs, M., Profiting from correlations: Adjusted estimators for categorical data, Applied Stochastic Models in Business and Industry, 35, 4, 1090-102 (2019) · Zbl 07883144 · doi:10.1002/asmb.2452
[18] Schaarschmidt, F.; Gerhard, D.; Vogel, C., Simultaneous confidence intervals for comparisons of several multinomial samples, Computational Statistics and Data Analysis, 106, 65-76 (2017) · Zbl 1466.62189 · doi:10.1016/j.csda.2016.09.004
[19] Sungboonchoo, C.; Ngamkham, T.; Panichkitkosolkul, W.; Volodin, A., Confidence estimation of the cross-product ratio of binomial proportions under different sampling schemes, Lobachevskii Journal of Mathematics, 42, 2, 1-16 (2021) · Zbl 1464.62277
[20] Wang, Y. J., The probability integrals of bivariate normal distributions: A contingency table approach, Biometrika, 74, 185-90 (1987) · Zbl 0606.62064 · doi:10.1093/biomet/74.1.185
[21] Xu, J. L., A property of the generalized proportional hazards model, Far East Journal of Theoretical Statisitcs, 41, 2, 149-62 (2012) · Zbl 1318.62289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.