×

Partial fractional derivatives of Riesz type and nonlinear fractional differential equations. (English) Zbl 1372.34022

Summary: Generalizations of fractional derivatives of noninteger orders for \(N\)-dimensional Euclidean space are proposed. These fractional derivatives of the Riesz type can be considered as partial derivatives of noninteger orders. In contrast to the usual Riesz derivatives, the suggested derivatives give the usual partial derivatives for integer values of orders. For integer values of orders, the partial fractional derivatives of the Riesz type are equal to the standard partial derivatives of integer orders with respect to coordinate. Fractional generalizations of the nonlinear equations such as sine-Gordon, Boussinesq, Burgers, Korteweg-de Vries and Monge-Ampere equations for nonlocal continuum are considered.

MSC:

34A08 Fractional ordinary differential equations
35R11 Fractional partial differential equations
Full Text: DOI

References:

[1] Letnikov, A.V.: Historical development of the theory of differentiation of fractional order. Mat. Sb. 3, 85-119 (1868). (in Russian)
[2] Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. Educ. Sci. Technol. 35(4), 487-501 (2004)
[3] Tenreiro Machado, J., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140-1153 (2011) · Zbl 1221.26002
[4] Tenreiro Machado, J.A., Galhano, A.M., Trujillo, J.J.: Science metrics on fractional calculus development since 1966. Fract. Calc. Appl. Anal. 16(2), 479-500 (2013) · Zbl 1312.26004
[5] Tenreiro Machado, J.A., Galhano, A.M.S.F., Trujillo, J.J.: On development of fractional calculus during the last fifty years. Scientometrics 98(1), 577-582 (2014)
[6] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993) · Zbl 0818.26003
[7] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1998) · Zbl 0922.45001
[8] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003
[9] Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Netherlands (2011) · Zbl 1251.26005
[10] Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers, Vol. I. Background and Theory. Springer, Higher Education Press (2012)
[11] Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014) · Zbl 1336.34001
[12] Valerio, D., Trujillo, J.J., Rivero, M., Tenreiro Machado, J.A., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222(8), 1827-1846 (2013)
[13] Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4-13 (2015) · Zbl 1349.26016
[14] Liu, Cheng-shi: Counterexamples on Jumarie’s two basic fractional calculus formulae. Commun. Nonlinear Sci. Numer. Simul. 22(1-3), 92-94 (2015) · Zbl 1331.26010
[15] Tarasov, V.E.: On chain rule for fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 30(1-3), 1-4 (2016) · Zbl 1489.26011
[16] Tarasov, V.E.: Local fractional derivatives of differentiable functions are integer-order derivatives or zero. Int. J. Appl. Comput. Math. 2(2), 195-201 (2016) · Zbl 1420.26006
[17] Tarasov, V.E.: Comments on Riemann-Christoffel tensor in differential geometry of fractional order application to fractal space-time, [Fractals 21 (2013) 1350004]. Fractals 23(2), 1575001 (2015)
[18] Tarasov, V.E.: Comments on the Minkowski’s space-time is consistent with differential geometry of fractional order, [Physics Letters A 363 (2007) 5-11]. Phys. Lett. A 379(14-15), 1071-1072 (2015) · Zbl 1341.83003
[19] Tarasov, V.E.: Leibniz rule and fractional derivatives of power functions. J. Comput. Nonlinear Dyn. 11(3), 031014 (2016)
[20] Tarasov, V.E.: No violation of the Leibniz rule. No fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 18(11), 2945-2948 (2013) · Zbl 1329.26015
[21] Carpinteri, A., Mainardi, F. (eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, New York (1997) · Zbl 0917.73004
[22] Sabatier, J., Agrawal, O.P., Tenreiro Machado, J.A. (eds.): Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) · Zbl 1116.00014
[23] Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010) · Zbl 1210.26004
[24] Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)
[25] Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Vol. II. Applications. Springer, Higher Education Press (2012) · Zbl 1306.47082
[26] Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics. Wiley-ISTE, London (2014) · Zbl 1291.74001
[27] Tarasov, V.E.: Review of some promising fractional physical models. Int. J. Mod. Phys. B 27(9), 1330005 (2013) · Zbl 1267.34012
[28] Tarasov, V.E.: Toward lattice fractional vector calculus. J. Phys. A 47(35), 355204 (2014). (51 pages) · Zbl 1308.26011
[29] Tarasov, V.E.: Lattice fractional calculus. Appl. Math. Comput. 257, 12-33 (2015) · Zbl 1338.82037
[30] Riesz, M.: L’integrale de Riemann-Liouville et le probleme de Cauchy pour l’equation des ondes. Bull. de la Soc. Math. de France. Supplement. 67, 153-170 (1939). https://eudml.org/doc/86724 · JFM 65.0440.03
[31] Riesz, M.: L’intégrale de Riemann-Liouville et le probléme de Cauchy. Acta Math. 81(1), 1-222 (1949). doi:10.1007/BF02395016. (in French) · Zbl 0033.27601 · doi:10.1007/BF02395016
[32] Prado, H., Rivero, M., Trujillo, J.J., Velasco, M.P.: New results from old investigation: a note on fractional m-dimensional differential operators. The fractional Laplacian. Fract. Calc. Appl. Anal. 18(2), 290-306 (2015) · Zbl 1316.26006
[33] Lizorkin, P.I.: Characterization of the spaces \[L^r_p(\mathbb{R}^n)\] Lpr(Rn) in terms of difference singular integrals. Mat. Sb. 81(1), 79-91 (1970). (in Russian) · Zbl 0198.18803
[34] Samko, S.: Convolution and potential type operators in \[L^{p(x)}\] Lp(x). Integral Transforms Spec. Funct. 7(3-4), 261-284 (1998) · Zbl 1023.31009
[35] Samko, S.: Convolution type operators in \[L^{p(x)}\] Lp(x). Integral Transforms Spec. Funct. 7(1-2), 123-144 (1998) · Zbl 0934.46032
[36] Samko, S.: On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integr. Transf. Spec. Funct. 16(5-6), 461-482 (2005) · Zbl 1069.47056
[37] Samko, S.: A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1(3), 225-245 (1998) · Zbl 1029.31004
[38] Rafeiro, H., Samko, S.: Approximative method for the inversion of the Riesz potential operator in variable Lebesgue spaces. Fract. Calc. Appl. Anal. 11(3), 269-280 (2008) · Zbl 1165.46012
[39] Rafeiro, H., Samko, S.: On multidimensional analogue of Marchaud formula for fractional Riesz-type derivatives in domains in \[R^nRn\]. Fract. Calc. Appl. Anal. 8(4), 393-401 (2005) · Zbl 1141.42014
[40] Almeida, A., Samko, S.: Characterization of Riesz and Bessel potentials on variable Lebesgue spaces. J. Funct. Spaces Appl. 4(2), 113-144 (2006) · Zbl 1129.46022
[41] Samko, S.G.: On spaces of Riesz potentials. Math. USSR-Izv. 10(5), 1089-1117 (1976) · Zbl 0379.46026
[42] Ortigueira, M.D., Laleg-Kirati, T.-M., Tenreiro Machado, J.A.: Riesz potential versus fractional Laplacian. J. Stat. Mech. Theory Exp. 2014(9), P09032 (2014) · Zbl 1456.35219
[43] Cerutti, R.A., Trione, S.E.: The inversion of Marcel Riesz ultrahyperbolic causal operators. Appl. Math. Lett. 12(6), 25-30 (1999) · Zbl 0953.47033
[44] Cerutti, R.A., Trione, S.E.: Some properties of the generalized causal and anticausal Riesz potentials. Appl. Math. Lett. 13(4), 129-136 (2000) · Zbl 1147.47302
[45] Tarasov, V.E.: Lattice model of fractional gradient and integral elasticity: Long-range interaction of Grunwald-Letnikov-Riesz type. Mech. Mater. 70(1), 106-114 (2014). arXiv:1502.06268 · Zbl 0953.47033
[46] Tarasov, V.E.: Fractional-order difference equations for physical lattices and some applications. J. Math. Phys. 56(10), 103506 (2015) · Zbl 1334.35400
[47] Tarasov, V.E.: Three-dimensional lattice models with long-range interactions of Grunwald-Letnikov type for fractional generalization of gradient elasticity. Meccanica 51(1), 125-138 (2016). doi:10.1007/s11012-015-0190-4 · Zbl 1382.74022 · doi:10.1007/s11012-015-0190-4
[48] Ortigueira, M.D., Magin, R.L., Trujillo, J.J., Velasco, M.P.: A real regularised fractional derivative. Signal Image Video Process. 6(3), 351-358 (2012)
[49] Ortigueira, M.D., Trujillo, J.J.: A unified approach to fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 17(12), 5151-5157 (2012) · Zbl 1263.35217
[50] Tarasov, V.E.: Exact discretization by Fourier transforms. Commun. Nonlinear Sci. Numer. Simul. 37, 3161 (2016) · Zbl 1473.42011
[51] Tarasov, V.E.: United lattice fractional integro-differentiation. Fract. Calc. Appl. Anal. 19(3) (2016) accepted for publication · Zbl 1345.26016
[52] Fichtenholz, G.M.: Differential and Integral Calculus, vol. 1, 7th Ed. Nauka, Moscow, 1969. (in Russian) · Zbl 0179.08103
[53] Tarasov, V.E.: Non-linear fractional field equations: weak non-linearity at power-law non-locality. Nonlinear Dyn. 80(4), 1665-1672 (2015) · Zbl 1345.35135
[54] Tarasov, V.E.: Large lattice fractional Fokker-Planck equation. J. Stat. Mech. Theory Exp. 2014(9), P09036 (2014). arXiv:1503.03636 · Zbl 1456.82796
[55] Tarasov, V.E.: Fractional Liouville equation on lattice phase-space. Phys. A Stat. Mech. Appl. 421, 330-342 (2015). arXiv:1503.04351 · Zbl 1395.82142
[56] Tarasov, V.E.: Fractional quantum field theory: from lattice to continuum. Adv. High Energy Phys. 2014, 957863 (2014). 14 pages · Zbl 1425.81082
[57] Tarasov, V.E., Aifantis, E.C.: Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality. Commun. Nonlinear Sci. Numer. Simul. 22(13), 197-227 (2015). (arXiv:1404.5241) · Zbl 1398.35280
[58] Tarasov, V.E.: Discretely and continuously distributed dynamical systems with fractional nonlocality. In: Cattani, C., Srivastava, H.M., Yang, X.-J. (eds.) Fractional Dynamics (De Gruyter Open, Warsaw, Berlin, 2015) Chapter 3. pp. 31-49. doi:10.1515/9783110472097-003 · Zbl 0033.27601
[59] Davydov, A.S.: Theory of Molecular Excitons. Plenum, New York (1971)
[60] Scott, A.C.: Davydov’s soliton. Phys. Rep. 217, 1-67 (1992) · Zbl 0644.92005
[61] Gaididei, YuB, Mingaleev, S.F., Christiansen, P.L., Rasmussen, K.O.: Effects of nonlocal dispersive interactions on self-trapping excitations. Phys. Rev. E 55, 6141-6150 (1997)
[62] Rasmussen, K.O., Christiansen, P.L., Johansson, M., Gaididei, YuB, Mingaleev, S.F.: Localized excitations in discrete nonlinear Schröedinger systems: effects of nonlocal dispersive interactions and noise. Phys. D 113, 134-151 (1998) · Zbl 0969.81010
[63] Gaididei, Yu., Flytzanis, N., Neuper, A., Mertens, F.G.: Effect of nonlocal interactions on soliton dynamics in anharmonic lattices. Phys. Rev. Lett. 75, 2240-2243 (1995) · Zbl 0938.35186
[64] Mingaleev, S.F., Gaididei, Y.B., Mertens, F.G.: Solitons in anharmonic chains with power-law long-range interactions. Phys. Rev. E 58, 3833-3842 (1998)
[65] Mingaleev, S.F., Gaididei, Y.B., Mertens, F.G.: Solitons in anharmonic chains with ultra-long-range interatomic interactions. Phys. Rev. E 61, R1044-R1047 (2000). arxiv:patt-sol/9910005 · Zbl 1179.37073
[66] Korabel, N., Zaslavsky, G.M.: Transition to chaos in discrete nonlinear Schrödinger equation with long-range interaction. Phys. A 378(2), 223-237 (2007)
[67] Dyson, F.J.: Existence of a phase-transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91-107 (1969) · Zbl 1306.47082
[68] Dyson, F.J.: Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 212-215 (1969)
[69] Dyson, F.J.: An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21, 269-283 (1971)
[70] Nakano, H., Takahashi, M.: Quantum Heisenberg chain with long-range ferromagnetic interactions at low temperatures. J. Phys. Soc. Jpn. 63, 926-933 (1994). arxiv:cond-mat/9311034
[71] Nakano, H., Takahashi, M.: Quantum Heisenberg model with long-range ferromagnetic interactions. Phys. Rev. B 50, 10331-10334 (1994)
[72] Nakano, H., Takahashi, M.: Quantum Heisenberg ferromagnets with long-range interactions. J. Phys. Soc. Jpn. 63, 4256-4257 (1994)
[73] Nakano, H., Takahashi, M.: Magnetic properties of quantum Heisenberg ferromagnets with long-range interactions. Phys. Rev. B 52, 6606-6610 (1995)
[74] Joyce, G.S.: Absence of ferromagnetism or antiferromagnetism in the isotropic Heisenberg model with long-range interactions. J. Phys. C 2, 1531-1533 (1969)
[75] Sousa, J.R.: Phase diagram in the quantum XY model with long-range interactions. Eur. Phys. J. B 43, 93-96 (2005)
[76] Braun, O.M., Kivshar, Y.S., Zelenskaya, I.I.: Kinks in the Frenkel-Kontorova model with long-range interparticle interactions. Phys. Rev. B 41, 7118-7138 (1990)
[77] Flach, S.: Breathers on lattices with long-range interaction. Phys. Rev. E 58, R4116-R4119 (1998)
[78] Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295, 181-264 (1998)
[79] Gorbach, A.V., Flach, S.: Compactlike discrete breathers in systems with nonlinear and nonlocal dispersive terms. Phys. Rev. E 72, 056607 (2005)
[80] Laskin, N., Zaslavsky, G.M.: Nonlinear fractional dynamics on a lattice with long-range interactions. Phys. A 368, 38-54 (2006). arxiv:nlin.SI/0512010
[81] Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of coupled oscillators with long-range interaction. Chaos 16(2), 023110 (2006). arxiv:nlin.PS/0512013 · Zbl 1152.37345
[82] Tarasov, V.E., Zaslavsky, G.M.: Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul. 11(8), 885-898 (2006) · Zbl 1106.35103
[83] Zaslavsky, G.M., Edelman, M., Tarasov, V.E.: Dynamics of the chain of oscillators with long-range interaction: from synchronization to chaos. Chaos 17(4), 043124 (2007) · Zbl 1163.37388
[84] Korabel, N., Zaslavsky, G.M., Tarasov, V.E.: Coupled oscillators with power-law interaction and their fractional dynamics analogues. Commun. Nonlinear Sci. Numer. Simul. 12(8), 1405-1417 (2007). arxiv:math-ph/0603074 · Zbl 1118.35345
[85] Tarasov, V.E.: Continuous limit of discrete systems with long-range interaction. J. Phys. A 39(48), 14895-14910 (2006). arXiv:0711.0826 · Zbl 1197.82044
[86] Tarasov, V.E.: Map of discrete system into continuous. J. Math. Phys. 47(9), 092901 (2006). arXiv:0711.2612 · Zbl 1112.82026
[87] Biler, P., Funaki, T., Woyczynski, W.A.: Fractal Burger equation. J. Differ. Equ. 14, 9-46 (1998) · Zbl 0911.35100
[88] Burgers, J.: The Nonlinear Diffusion Equation. Reidel, Dordrecht (2008)
[89] Momani, S.: An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70, 110-1118 (2005) · Zbl 1119.65394
[90] Miskinis, P.: Weakly nonlocal supersymmetric KdV hierarchy. Nonlinear Anal. Model. Control 10, 343-348 (2005) · Zbl 1147.35352
[91] de Bouard, A., Saut, J.-C.: Solitary waves of generalized Kadomtsev-Petviashvili equations, Annales de l’Institut Henri Poincare. Anal. Non Lineaire 14(2), 211-236 (1997) · Zbl 0883.35103
[92] Jones, K.L.: Three-dimensional Korteweg-de Vries equation and traveling wave solutions. Int. J. Math. Math. Sci. 24(6), 379-384 (2000) · Zbl 0963.35169
[93] Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200-218 (2010) · Zbl 1185.65200
[94] Shen, S., Liu, F., Anh, V., Turner, I.: The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 73(6), 850-872 (2008) · Zbl 1179.37073
[95] Li, ChP, Zeng, F.H.: Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos 22(4), 1230014 (2012) · Zbl 1258.34018
[96] Li, ChP, Zeng, F.H.: The finite difference methods for fractional ordinary differential equations. Numer. Funct. Anal. Optim. 34(2), 149-179 (2013) · Zbl 1267.65094
[97] Huang, Y.H., Oberman, A.: Numerical methods for the fractional Laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52(6), 3056-3084 (2014). arXiv:1311.7691 · Zbl 1316.65071
[98] Tarasov, V.E.: General lattice model of gradient elasticity. Mod. Phys. Lett. B. 28(7), 1450054 (2014) (17 pages). arXiv:1501.01435
[99] Tarasov, V.E.: Lattice model with nearest-neighbor and next-nearest-neighbor interactions for gradient elasticity. Discontinuity Nonlinearity Complex. 4(1), 11-23 (2015). arXiv:1503.03633
[100] Tarasov, V.E.: Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys. 323(11), 2756-2778 (2008) · Zbl 1180.78003
[101] Samko, S.: On local summability of Riesz potentials in the case \[Re \alpha >0\] Reα>0. Anal. Math. 25, 205-210 (1999) · Zbl 0949.40017
[102] Webb, G.M., Zank, G.P.: Painleve analysis of the three-dimensional Burgers equation. Phys. Lett. A 150(1), 14-22 (1990) · Zbl 0719.35090
[103] Shandarin, S.F.: Three-dimensional Burgers equation as a model for the large-scale structure formation in the Universe, Chapter In: The IMA Volumes in Mathematics and its Applications (1996) pp. 401-413. arXiv:astro-ph/9507082 · Zbl 0865.35117
[104] Dai, Ch-Q, Yu, F.-B.: Special solitonic localized structures for the (3+1)-dimensional Burgers equation in water waves. Wave Motion 51(1), 52-59 (2014) · Zbl 1524.35522
[105] Korpusov, M.O.: Blowup of solutions of the three-dimensional Rosenau-Burgers equation. Theor. Math. Phys. 170(3), 280-286 (2012) · Zbl 1274.35288
[106] Wazwaz, A.-M.: A variety of (3+1)-dimensional Burgers equations derived by using the Burgers recursion operator. Math. Methods Appl. Sci. (2014). doi:10.1002/mma.3255 published online: 18 AUG · Zbl 1342.37071
[107] Johnson, R.S.: A two-dimensional Boussinesq equation for water waves and some of its solutions. J. Fluid Mech. 323(1), 65-78 (1996) · Zbl 0896.76007
[108] El-Sabbagh, M.F., Ali, A.T.: New exact solutions for (3+1)-dimensional Kadomtsev-Petviashvili equation and generalized (2+1)-dimensional Boussinesq equation. Int. J. Nonlinear Sci. Numer. Simul. 6(2), 151-162 (2005) · Zbl 1401.35267
[109] Yong-Qi, Wu: Periodic wave solution to the (3+1)-dimensional Boussinesq equation. Chin. Phys. Lett. 25(8), 2739-2742 (2008)
[110] Huan, Zhang, Bo, Tian, Hai-Qiang, Zhang, Tao, Geng, Xiang-Hua, Meng, Wen-Jun, Liu, Ke-Jie, Cai: Periodic wave solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev-Petviashvili equation. Commun. Theor. Phys. 50(5), 1169-1176 (2008) · Zbl 1392.35068
[111] Moleleki, L.D., Khalique, C.M.: Symmetries, traveling wave solutions, and conservation laws of a (3+1)-dimensional Boussinesq equation. Adv. Math. Phys. 2014. (2014) Article ID 672679 · Zbl 1307.35018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.