×

What is a fractional derivative? (English) Zbl 1349.26016

J. Comput. Phys. 293, 4-13 (2015); correction ibid. 321, 1255–1257 (2016).
Summary: This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.

MSC:

26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Machado, J. T.; Lopes, A. M.; Duarte, F. B.; Ortigueira, M. D.; Rato, R. T., Rhapsody in fractional, Fract. Calc. Appl. Anal., 17, 4 (2014) · Zbl 1314.39007
[2] de Oliveira, E. C.; Machado, J. T., A review of definitions for fractional derivatives and integrals, Math. Probl. Eng., 2014, 238459, 5 (2014) · Zbl 1407.26013
[3] Khalila, R.; Horania, M. A.; Yousefa, A.; Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264, 65-70 (2014) · Zbl 1297.26013
[4] Abdeljawad, T., On conformable fractional calculus · Zbl 1304.26004
[5] Kolwankar, K. M.; Gangal, A. D., Fractional differentiability of nowhere differentiable functions and dimensions, Chaos, 6, 4, 505-513 (1996) · Zbl 1055.26504
[6] Kleinz, M.; Osler, T. J., A child’s garden of fractional derivatives, Coll. Math. J., 31, 2, 82-88 (2000) · Zbl 0995.26506
[7] Nigmatullin, R. R., A fractional integral and its physical interpretation, Theor. Math. Phys., 90, 3, 242-251 (1992) · Zbl 0795.26007
[8] Rutman, R. S., On the paper by R.R. Nigmatullin “A fractional integral and its physical interpretation”, Theor. Math. Phys., 100, 3, 1154-1156 (1994) · Zbl 0871.26009
[9] Tatom, F. B., The relationship between fractional calculus and fractals, Fractals, 3, 1, 217-229 (1995) · Zbl 0877.28009
[10] Rutman, R. S., On physical interpretations of fractional integration and differentiation, Theor. Math. Phys., 105, 3, 393-404 (1995) · Zbl 0897.26002
[11] Adda, F. B., Geometric interpretation of the fractional derivative, J. Fract. Calc., 11, 21-52 (1997) · Zbl 0907.26005
[12] Yu, Z.-G.; Ren, F.-Y.; Zhou, J., Fractional integral associated to generalized cookie-cutter set and its physical interpretation, J. Phys. A, Math. Gen., 30, 15, 5569-5577 (1997) · Zbl 1042.82618
[13] Moshrefi-Torbati, M.; Hammond, J. K., Physical and geometrical interpretation of fractional operators, J. Franklin Inst., 335, 6, 1077-1086 (1998) · Zbl 0989.26004
[14] Adda, F. B., Interprétation géometrique de la différentiabilité et du gradient d’ordre réel, C. R. Acad. Sci., Ser. 1 Math., 326, 8, 931-934 (1998) · Zbl 0981.26006
[15] Kiryakova, V., A long standing conjecture failes?, (Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions. Transform Methods and Special Functions, Varna’96 (1998), Institute of Mathematics and Informatics, Bulgarian Academy of Sciences: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Windsor, Ontario, Canada), 579-588
[16] Gorenflo, R., Afterthoughts on interpretation of fractional derivatives and integrals, (Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions. Transform Methods and Special Functions, Varna’96 (1998), Institute of Mathematics and Informatics, Bulgarian Academy of Sciences: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Windsor, Ontario, Canada), 589-591
[17] Mainardi, F., Considerations on fractional calculus: interpretations and applications, (Rusev, P.; Dimovski, I.; Kiryakova, V., Transform Methods and Special Functions. Transform Methods and Special Functions, Varna’96 (1998), Institute of Mathematics and Informatics, Bulgarian Academy of Sciences: Institute of Mathematics and Informatics, Bulgarian Academy of Sciences Windsor, Ontario, Canada), 594-597
[18] Podlubny, I., Geometric and physical interpretation of fractional integration and fractional differentiation, Fract. Calc. Appl. Anal., 5, 4, 367-386 (2002) · Zbl 1042.26003
[19] Machado, J. A.T., A probabilistic interpretation of the fractional-order differentiation, Fract. Calc. Appl. Anal., 6, 1, 73-80 (2003) · Zbl 1035.26010
[20] Stanislavsky, A. A., Probability interpretation of the integral of fractional order, Theor. Math. Phys., 138, 3, 418-431 (2004) · Zbl 1178.26008
[21] Machado, J. A.T., Fractional derivatives: probability interpretation and frequency response of rational approximations, Commun. Nonlinear Sci. Numer. Simul., 14, 9-10, 3492-3497 (2009)
[22] Ross, B., A brief history and exposition of the fundamental theory of fractional calculus, (Ross, B., Fractional Calculus and Its Applications. Fractional Calculus and Its Applications, Lect. Notes Math. (1975), Springer-Verlag: Springer-Verlag Berlin, Heidelberg), 1-36 · Zbl 0303.26004
[23] Machado, J. T.; Kiryakova, V.; Mainardi, F., Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16, 3, 1140-1153 (2011) · Zbl 1221.26002
[24] Machado, J. T.; Galhano, A. M.; Trujillo, J. J., On development of fractional calculus during the last fifty years, Scientometrics, 98, 1, 577-582 (2014)
[25] Ortigueira, M. D.; Coito, F. J.; Trujillo, J. J., Discrete-time differential systems, Signal Process. (2014)
[26] Kilbas, A.; Srivastava, H.; Trujillo, J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204 (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[27] Ortigueira, M. D., Fractional Calculus for Scientists and Engineers, Lecture Notes in Electrical Engineering (2011), Springer: Springer Berlin, Heidelberg · Zbl 1251.26005
[28] Bastos, N. R.O., Fractional calculus on time scales (2012), Aveiro University: Aveiro University Aveiro, Portugal, Ph.D. thesis
[29] Ortigueira, M. D.; Coito, F.; Trujillo, J. J., A new look into the discrete-time fractional calculus: derivatives and exponentials, (6th Workshop on Fractional Differentiation and Its Applications, Part of 2013 IFAC Joint Conference SSSC. 6th Workshop on Fractional Differentiation and Its Applications, Part of 2013 IFAC Joint Conference SSSC, Grenoble, France (2013))
[30] Ortigueira, M. D.; Coito, F.; Trujillo, J. J., A new look into the discrete-time fractional calculus: transform and linear systems, (6th Workshop on Fractional Differentiation and Its Applications, Part of 2013 IFAC Joint Conference SSSC. 6th Workshop on Fractional Differentiation and Its Applications, Part of 2013 IFAC Joint Conference SSSC, Grenoble, France (2013))
[31] Gel’fand, I. M.; Shilov, G. E., Generalized Functions: Properties and Operations (1964), Academic Press: Academic Press New York · Zbl 0115.33101
[32] Tarasov, V. E., A unified approach to fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 5151-5157 (2012) · Zbl 1263.35217
[33] Tarasov, V. E., No violation of the Leibniz rule. No fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 18, 11, 2945-2948 (2013) · Zbl 1329.26015
[34] Ortigueira, M. D.; Trujillo, J. J., A unified approach to fractional derivatives, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 5151-5157 (2012) · Zbl 1263.35217
[35] Jumarie, G., An approach to differential geometry of fractional order via modified Riemann-Liouville derivative, Acta Math. Sin., 28, 9, 1741-1768 (2012) · Zbl 1266.26013
[36] Samko, S.; Kilbas, A.; Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Amsterdam · Zbl 0818.26003
[37] Henrici, P., Applied and Computational Complex Analysis, vol. 2 (1991), Wiley-Interscience · Zbl 0925.30003
[38] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Series on Complexity, Nonlinearity and Chaos (2010), Springer: Springer Heidelberg · Zbl 1215.34001
[39] Riesz, M., L’integral de Riemann-Liouville et le probleme de Cauchy, Acta Math., 81, 1, 1-222 (1949) · Zbl 0033.27601
[40] Feller, W., On a generalization of Marcel Riesz potentials and the semigroups, generated by them, (Communications du Seminaire Mathematique de Universite de Lund, vol. 21 (1952)), 72-81 · Zbl 0048.08503
[41] Chen, W.; Holm, S., Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency dependency, J. Acoust. Soc. Am., 115, 4, 1424-1430 (2004)
[42] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 8, 1245-1260 (2007) · Zbl 1143.26002
[43] Ortigueira, M. D., Riesz potential operators and inverses via fractional centred derivatives, Int. J. Math. Math. Sci., 2006, 12 (2006), (Article ID 48391) · Zbl 1122.26007
[44] Ortigueira, M. D., Fractional central differences and derivatives, J. Vib. Control, 14, 9-10, 1255-1266 (2006) · Zbl 1229.26015
[45] Tsenga, C.-C.; Lee, S.-L., Design of digital Riesz fractional order differentiator, Signal Process., 102, 32-45 (2014)
[46] Debnath, L.; Bhatta, D., Integral Transforms and Their Applications (2007), Chapman & Hall/CRC: Chapman & Hall/CRC Boca Raton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.