×

New results from old investigation: a note on fractional \(m\)-dimensional differential operators. The fractional Laplacian. (English) Zbl 1316.26006

The aim of this paper is to highlight that in his famous works, Riesz gave the necessary tools to introduce several new definitions of the generalized coupled fractional Laplacian, which can be applied to much wider domains of functions than those given in the current literature and are based in the theory of fractional power of operators or in certain hyper-singular integrals.
The authors show that the \(m\)-dimensional integral operators given by Riesz, their properties and the well-known techniques used to give the wider definition for many of the known one-dimensional fractional differential operators allow to get a more suitable explicit definition of the differential fractional \(m\)-dimensional coupled Laplacian.
Furthermore, in the last part of the paper, the authors introduce the corresponding fractional hyperbolic differential operator, called the fractional Lorentzian Laplacian.

MSC:

26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
34A08 Fractional ordinary differential equations
Full Text: DOI

References:

[1] D. Baleanu, J. Tenreiro Machado, A. C. J. Luo (Ed.), Fractional Dynamics and Control. Springer, New York (2011).;
[2] X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Annal. l’Inst. Henri Poincare C 31, No 1 (2014), 23-53.; · Zbl 1286.35248
[3] L. Caffarelli and A. Figalli, Regularity of solutions to the parabolic fractional obstacle problema. J. Reine Angew. Math. 680 (2013), 191-233.; · Zbl 1277.35088
[4] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian. Comm. Part. Diff. Equat. 32, No 8 (2007), 1245-1260.; · Zbl 1143.26002
[5] L. Caffarelli, F. Soria, J. L. Vázquez, Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. 15, No 5 (2013), 1701-1746.; · Zbl 1292.35312
[6] L. Caffarelli and J. L. Vázquez, Nonlinear porous medium flow with fractional potential pressure. Arch. Rat. Mech. Anal. 202, No 2 (2011), 537-565.; · Zbl 1264.76105
[7] Q. Du, M. D. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Model. Meth. Appl. Sci. 23, No 3 (2013), 493-540.; · Zbl 1266.26020
[8] W. Feller, On a generalization of Macel Riesz potentials and the semigroups, generated by them. Communications du seminaire mathematique de universite de Lund, Tome suppl. dédiéà M. Riesz 21 (1952), 72-81.;
[9] A. Le. Méhauté, J. Tenreiro Machado, J. C. Trigeassou, J. Sabatier (Ed.), Fractional Differentiation and its Applications. Ubooks Verlag, Neusäss (2005).;
[10] J. Tenreiro. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Comm. Nonlin. Sci. Num. Sim. 16, No 3 (2011), 1140-1153.; · Zbl 1221.26002
[11] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010).; · Zbl 1210.26004
[12] C. Martínez and M. A. Sanz, The Theory of Fractional Powers of Operators. Elsevier, Amsterdam (2001).; · Zbl 0971.47011
[13] A. C. McBride, Fractional Calculus and Integral Transforms of Generalized Functions. Pitman Press, San Francisco (1979).; · Zbl 0423.46029
[14] M. M. Meerschaert, J. Mortensen, S. W. Wheatcraft, Fractional vector calculus for fractional advection-dispersion. Physica A 367, No 15 (2006), 181-190.;
[15] R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1-77.; · Zbl 0984.82032
[16] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).; · Zbl 1092.45003
[17] V. S. Kiryakova, Generalized Fractional Calculus and Applications. Longman & J. Wiley, Harlow & New York (1994).; · Zbl 0882.26003
[18] M. Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Math. 81 (1949), 1-223.; · Zbl 0033.27601
[19] P. Rusev, I. Dimovski, V. Kiryakova (Eds.), Transform Methods & Special Functions, Varna’96 (Proc. 2nd International Workshop, with Special Session on FC and Open Problems in FC Round Table). Institute of Mathematics and Informatics (IMI - BAS), Sofia (1998).;
[20] J. Sabatier, O. P. Agrawal, J. Tenreiro Machado (Eds.), Advances in Factional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007).; · Zbl 1116.00014
[21] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993).; · Zbl 0818.26003
[22] S. Samko, Hypersingular Integrals and Their Applications. Taylor and Francis, New York (2002).; · Zbl 0998.42010
[23] L. Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator. Comm. Pure Appl. Math. 60, No 1 (2007), 67-112.; · Zbl 1141.49035
[24] V. E. Tarasov, Fractional vector calculus and fractional Maxwell’s equations. Annals Phys. 323, No 11 (2008), 2756-2778.; · Zbl 1180.78003
[25] V. E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Heidelberg (2011).;
[26] V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. I-II. Springer, publ. jointly with Higher Education Press, Bejing and Heidelberg (2013).; · Zbl 1312.26002
[27] D. Valerio, J. J. Trujillo, M. Rivero, J. Tenreiro Machado, and D. Baleanu, Fractional Calculus: A survey of useful formulas. Eur. Phys. J. St. 222, No 8 (2013), 1825-1844.;
[28] J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators. Discrete Contin. Dyn. Syst. (2014), To appear; ArXiv:1401.3640.; · Zbl 1290.26010
[29] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2008).; · Zbl 1152.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.