×

Baxter permuton and Liouville quantum gravity. (English) Zbl 1517.05016

Summary: The Baxter permuton is a random probability measure on the unit square which describes the scaling limit of uniform Baxter permutations. We determine an explicit formula for the density of the expectation of the Baxter permuton. This answers a question of T. Dokos and I. Pak [Online J. Anal. Comb. 9, Article 5, 12 p. (2014; Zbl 1292.05022)]. We also prove that all pattern densities of the Baxter permuton are strictly positive, distinguishing it from other permutons arising as scaling limits of pattern-avoiding permutations. Our proofs rely on a recent connection between the Baxter permuton and Liouville quantum gravity (LQG) coupled with the Schramm-Loewner evolution (SLE). The method works equally well for a two-parameter generalization of the Baxter permuton recently introduced by the first author, except that the density is not as explicit. This new family of permutons, called skew Brownian permuton, describes the scaling limit of a number of random constrained permutations. We finally observe that in the LQG/SLE framework, the expected proportion of inversions in a skew Brownian permuton equals \(\frac{\pi -2\theta }{2\pi }\) where \(\theta\) is the so-called imaginary geometry angle between a certain pair of SLE curves.

MSC:

05A15 Exact enumeration problems, generating functions
05A16 Asymptotic enumeration
05A05 Permutations, words, matrices
60D05 Geometric probability and stochastic geometry
60J67 Stochastic (Schramm-)Loewner evolution (SLE)

Citations:

Zbl 1292.05022

References:

[1] Alon, N.; Defant, C.; Kravitz, N., The runsort permuton, Adv. in Appl. Math., 139 (2022) · Zbl 1491.05003
[2] Aru, J.; Huang, Y.; Sun, X., Two perspectives of the 2D unit area quantum sphere and their equivalence, Commun. Math. Phys., 356, 1, 261-283 (2017) · Zbl 1408.83023
[3] Ang, M., Holden, N., Sun, X.: Conformal welding of quantum disks. arXiv preprint: arxiv:2009.08389 (2020)
[4] Ang, M., Holden, N., Sun, X.: Integrability of SLE via conformal welding of random surfaces. arXiv preprint: arXiv:2104.09477 (2021)
[5] Alberts, T.; Kozdron, MJ; Lawler, GF, The Green function for the radial Schramm-Loewner evolution, J. Phys. A, 45, 49 (2012) · Zbl 1263.82038
[6] Aru, J.; Lupu, T.; Sepúlveda, A., Extremal distance and conformal radius of a \(\rm CLE_4\) loop, Ann. Probab., 50, 2, 509-558 (2022) · Zbl 1486.31005
[7] Abrosimov, N., Mednykh, A.: Volumes of polytopes in spaces of constant curvature. In: Rigidity and Symmetry, pp. 1-26. Springer (2014) · Zbl 1320.52013
[8] Ang, M., Remy, G., Sun, X.: FZZ formula of boundary Liouville CFT via conformal welding. arXiv preprint: arXiv:2104.09478 (2021)
[9] Ang, M., Remy, G., Sun, X., Zhu, T.: Integrability of bulk-boundary coupling in Liouville CFT. In: preparation (2022)
[10] Ang, M., Sun, X.: Integrability of the conformal loop ensemble. arXiv preprint: arxiv:2107.01788 (2021)
[11] Ang, M., Sun, X., Yu, P.: Quantum triangles and imaginary geometry flow lines. arXiv preprint: arxiv:2211.04580 (2022)
[12] Baxter, G., On fixed points of the composite of commuting functions, Proc. Am. Math. Soc., 15, 6, 851-855 (1964) · Zbl 0126.38701
[13] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Pierrot, A., The Brownian limit of separable permutations, Ann. Probab., 46, 4, 2134-2189 (2018) · Zbl 1430.60013
[14] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Maazoun, M.; Pierrot, A., Universal limits of substitution-closed permutation classes, J. Eur. Math. Soc. (JEMS), 22, 11, 3565-3639 (2020) · Zbl 1469.60039
[15] Bassino, F.; Bouvel, M.; Féray, V.; Gerin, L.; Maazoun, M.; Pierrot, A., Scaling limits of permutation classes with a finite specification: a dichotomy, Adv. Math., 405 (2022) · Zbl 1509.60013
[16] Borga, J.; Bouvel, M.; Féray, V.; Stufler, B., A decorated tree approach to random permutations in substitution-closed classes, Electron. J. Probab., 25, 67, 52 (2020) · Zbl 1456.60030
[17] Bonichon, N.; Bousquet-Mélou, M.; Fusy, É., Baxter permutations and plane bipolar orientations, Sém. Lothar. Combin., 61, B61Ah (2010) · Zbl 1205.05004
[18] Borga, J.; Duchi, E.; Slivken, E., Almost square permutations are typically square, Annales de l’Institut Henri Poincare, Probabilites et Statistiques, 57, 4, 1834-1856 (2021) · Zbl 1483.05002
[19] Bouvel, M.; Guerrini, V.; Rechnitzer, A.; Rinaldi, S., Semi-Baxter and strong-Baxter: two relatives of the Baxter sequence, SIAM J. Discrete Math., 32, 4, 2795-2819 (2018) · Zbl 1401.05022
[20] Borga, J., Gwynne, E., Sun, X.: Permutons, meanders, and SLE-decorated Liouville quantum gravity. arXiv preprint: arXiv:2207.02319 (2022)
[21] Beliaev, D.; Izyurov, K., A proof of factorization formula for critical percolation, Commun. Math. Phys., 310, 3, 611-623 (2012) · Zbl 1278.82030
[22] Beliaev, D.; Fredrik Johansson, V., Some remarks on SLE bubbles and Schramm’s two-point observable, Comm. Math. Phys., 320, 2, 379-394 (2013) · Zbl 1268.60105
[23] Bousquet-Mélou, M.: Four classes of pattern-avoiding permutations under one roof: generating trees with two labels. Electron. J. Combin. 9(2):Research paper 19, 31, 2002/03. Permutation patterns (Otago, 2003) · Zbl 1031.05006
[24] Bettinelli, J.; Miermont, G., Compact Brownian surfaces I: Brownian disks, Probab. Theory Rel. Fields, 167, 3-4, 555-614 (2017) · Zbl 1373.60062
[25] Borga, J.; Maazoun, M., Scaling and local limits of Baxter permutations and bipolar orientations through coalescent-walk processes, Ann. Probab., 50, 4, 1359-1417 (2022) · Zbl 1504.60163
[26] Berestycki, Nathanaël, Norris, James: Lectures on Schramm-Loewner Evolution. https://homepage.univie.ac.at/nathanael.berestycki/wp-content/uploads/2022/05/sle.pdf (2014)
[27] Borga, J.: Random permutations—a geometric point of view. arXiv preprint: arXiv:2107.09699 (Ph.D. Thesis) (2021)
[28] Borga, J.: The skew Brownian permuton: a new universality class for random constrained permutations. arXiv preprint: arXiv:2112.00156 (2021)
[29] Borga, J., The permuton limit of strong-Baxter and semi-Baxter permutations is the skew Brownian permuton, Electron. J. Probab., 27, 1-53 (2022) · Zbl 1515.60038
[30] Boyce, WM, Generation of a class of permutations associated with commuting functions, Math. Algorithms, 2, 19-26 (1967) · Zbl 0266.05009
[31] Berestycki, N.l., Powell, E.: Gaussian free field, Liouville quantum gravity and Gaussian multiplicative chaos. Lecture notes https://homepage.univie.ac.at/nathanael.berestycki/Articles/master.pdf (2021)
[32] Belavin, AA; Polyakov, AM; Zamolodchikov, AB, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 2, 333-380 (1984) · Zbl 0661.17013
[33] Borga, J.; Slivken, E., Square permutations are typically rectangular, Ann. Appl. Probab., 30, 5, 2196-2233 (2020) · Zbl 1475.60017
[34] Canary, H., Aztec diamonds and Baxter permutations, Electron. J. Combin., 17, 1, 105, 12 (2010) · Zbl 1201.52019
[35] Chen, L.; Curien, N.; Maillard, P., The perimeter cascade in critical boltzmann quadrangulations decorated by an \(o (n)\) loop model, Annales de l’Institut Henri Poincare D, 7, 4, 535-584 (2020) · Zbl 1454.05106
[36] Cerclé, B., Unit boundary length quantum disk: a study of two different perspectives and their equivalence, ESAIM Probab. Stat., 25, 433-459 (2021) · Zbl 1482.60012
[37] Chung, F-RK; Graham, RL; Hoggatt, VE Jr; Kleiman, M., The number of Baxter permutations, J. Combin. Theory Ser. A, 24, 3, 382-394 (1978) · Zbl 0398.05003
[38] Dauvergne, D., The Archimedean limit of random sorting networks, J. Am. Math. Soc., 35, 4, 1215-1267 (2022) · Zbl 1519.60017
[39] David, F.; Kupiainen, A.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the Riemann sphere, Commun. Math. Phys., 342, 3, 869-907 (2016) · Zbl 1336.83042
[40] Duplantier, B.; Miller, J.; Sheffield, S., Liouville quantum gravity as a mating of trees, Astérisque, 427, 1 (2021) · Zbl 1503.60003
[41] Dorn, H.; Otto, H-J, Two- and three-point functions in Liouville theory, Nucl. Phys. B, 429, 375-388 (1994) · Zbl 1020.81770
[42] Dokos, T.; Pak, I., The expected shape of random doubly alternating Baxter permutations, Online J. Anal. Comb., 9, 12 (2014) · Zbl 1292.05022
[43] Duplantier, B.; Sheffield, S., Liouville quantum gravity and KPZ, Invent. Math., 185, 2, 333-393 (2011) · Zbl 1226.81241
[44] Dubédat, J., Excursion decompositions for SLE and Watts’ crossing formula, Probab. Theory Related Fields, 134, 3, 453-488 (2006) · Zbl 1112.60032
[45] Dubédat, J., SLE and the free field: partition functions and couplings, J. Am. Math. Soc., 22, 4, 995-1054 (2009) · Zbl 1204.60079
[46] Felsner, S.; Fusy, É.; Noy, M.; Orden, D., Bijections for Baxter families and related objects, J. Combin. Theory Ser. A, 118, 3, 993-1020 (2011) · Zbl 1238.05010
[47] Gwynne, E.; Holden, N.; Miller, J., An almost sure KPZ relation for SLE and Brownian motion, Ann. Probab., 48, 2, 527-573 (2020) · Zbl 1455.60111
[48] Gwynne, E., Holden, N., Sun, X.: Joint scaling limit of a bipolar-oriented triangulation and its dual in the peanosphere sense. arXiv preprint: arxiv:1603.01194 (2016)
[49] Gwynne, E., Holden, N., Sun, X.: Mating of trees for random planar maps and Liouville quantum gravity: a survey. arXiv preprint: arxiv:1910.04713 (2019)
[50] Guillarmou, C., Kupiainen, A., Rhodes, R., Vargas, V.: Conformal bootstrap in Liouville theory. arXiv preprint: arxiv:2005.11530 (2020)
[51] Gwynne, E.; Miller, J., Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk, Ann. Inst. Henri Poincaré Probab. Stat., 55, 1, 551-589 (2019) · Zbl 1466.60019
[52] Guillarmou, C.; Rhodes, R.; Vargas, V., Polyakov’s formulation of \(2d\) bosonic string theory, Publ. Math. Inst. Hautes Études Sci., 130, 111-185 (2019) · Zbl 1514.81216
[53] Garban, C.; Ferreras, JAT, The expected area of the filled planar Brownian loop is \(\pi /5\), Commun. Math. Phys., 264, 3, 797-810 (2006) · Zbl 1107.82023
[54] Holden, N., Lehmkuehler, N.: Liouville quantum gravity weighted by conformal loop ensemble nesting statistics. arXiv preprint: arxiv:2204.09905 (2022)
[55] Huang, Y.; Rhodes, R.; Vargas, V., Liouville quantum gravity on the unit disk, Ann. Inst. Henri Poincaré Probab. Stat., 54, 3, 1694-1730 (2018) · Zbl 1404.60071
[56] Hongler, C.; Smirnov, S., Critical percolation: the expected number of clusters in a rectangle, Probab. Theory Rel. Fields, 151, 3-4, 735-756 (2011) · Zbl 1237.60077
[57] Holden, N.; Sun, X., SLE as a mating of trees in Euclidean geometry, Commun. Math. Phys., 364, 1, 171-201 (2018) · Zbl 1408.60073
[58] Iyengar, S.: Hitting lines with two-dimensional brownian motion. SIAM J. Appl. Mathe. (1985) · Zbl 0591.60077
[59] Kahane, J-P, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, 9, 2, 105-150 (1985) · Zbl 0596.60041
[60] Kenyon, R.; Miller, J.; Sheffield, S.; Wilson, DB, Bipolar orientations on planar maps and \(SLE_{12}\), Ann. Probab., 47, 3, 1240-1269 (2019) · Zbl 1466.60170
[61] Knizhnik, VG; Polyakov, AM; Zamolodchikov, AB, Fractal structure of 2D-quantum gravity, Modern Phys. Lett A, 3, 8, 819-826 (1988)
[62] Kupiainen, A.; Rhodes, R.; Vargas, V., Integrability of Liouville theory: proof of the DOZZ formula, Ann. Math. (2), 191, 1, 81-166 (2020) · Zbl 1432.81055
[63] Lawler, GF, Conformally invariant processes in the plane. Mathematical Surveys and Monographs (2005), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1074.60002
[64] Lawler, GF, Conformally invariant processes in the plane. Mathematical Surveys and Monographs (2005), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1074.60002
[65] Lenells, J.; Viklund, F., Schramm’s formula and the Green’s function for multiple SLE, J. Stat. Phys., 176, 4, 873-931 (2019) · Zbl 1435.30122
[66] Lawler, G.; Werner, W., The brownian loop soup, Probab. Theory Relat. Fields, 128, 4, 565-588 (2004) · Zbl 1049.60072
[67] Maazoun, M., On the Brownian separable permuton, Combin. Probab. Comput., 29, 2, 241-266 (2020) · Zbl 1478.60027
[68] Mallows, CL, Baxter permutations rise again, J. Combin. Theory Ser. A, 27, 3, 394-396 (1979) · Zbl 0427.05005
[69] Miller, J.; Sheffield, S., Imaginary geometry I: interacting SLEs, Probab. Theory Rel. Fields, 164, 3-4, 553-705 (2016) · Zbl 1336.60162
[70] Miller, J.; Sheffield, S., Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, Probab. Theory Relat. Fields, 169, 3, 729-869 (2017) · Zbl 1378.60108
[71] Miller, J.; Sheffield, S., Liouville quantum gravity and the Brownian map I: the \({\rm QLE}(8/3,0)\) metric, Invent. Math., 219, 1, 75-152 (2020) · Zbl 1437.83042
[72] Miller, J.; Sheffield, S., Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding, Ann. Probab., 49, 6, 2732-2829 (2021) · Zbl 1478.60045
[73] Murakami, J., Volume formulas for a spherical tetrahedron, Proc. Am. Math. Soc., 140, 9, 3289-3295 (2012) · Zbl 1277.51021
[74] Remy, G., The Fyodorov-Bouchaud formula and Liouville conformal field theory, Duke Math. J., 169, 1, 177-211 (2020) · Zbl 1465.60032
[75] Romik, D., Permutations with short monotone subsequences, Adv. Appl. Math., 37, 4, 501-510 (2006) · Zbl 1109.05015
[76] Rohde, S.; Schramm, O., Basic properties of SLE, Ann. Math., 161, 2, 1 (2005) · Zbl 1081.60069
[77] Robert, R.; Vargas, V., Gaussian multiplicative chaos revisited, Ann. Probab., 38, 2, 605-631 (2010) · Zbl 1191.60066
[78] Rhodes, R.; Vargas, V., KPZ formula for log-infinitely divisible multifractal random measures, ESAIM Probab. Stat., 15, 358-371 (2011) · Zbl 1268.60070
[79] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math., 118, 1, 221-288 (2000) · Zbl 0968.60093
[80] Schramm, O., A percolation formula, Electron. Commun. Probab., 6, 115-120 (2001) · Zbl 1008.60100
[81] Schramm, O.: Conformally invariant scaling limits: an overview and a collection of problems. In: Selected works of Oded Schramm. Volume 1, 2, Sel. Works Probab. Stat., pp. 1161-1191. Springer, New York (2011) · Zbl 1248.01043
[82] Sheffield, Scott, Gaussian free fields for mathematicians, Probab. Theory Rel. Fields, 139, 1 (2007) · Zbl 1132.60072
[83] Sheffield, S., Conformal weldings of random surfaces: SLE and the quantum gravity zipper, Ann. Probab., 44, 5, 3474-3545 (2016) · Zbl 1388.60144
[84] Smirnov, Stanislav: Towards conformal invariance of 2D lattice models. In: International Congress of Mathematicians. Vol. II, pp. 1421-1451. Eur. Math. Soc., Zürich (2006) · Zbl 1112.82014
[85] Schramm, O.; Sheffield, S.; Wilson, DB, Conformal radii for conformal loop ensembles, Commun. Math. Phys., 288, 1, 43-53 (2009) · Zbl 1187.82044
[86] Starr, S., Thermodynamic limit for the Mallows model on \(S_n\), J. Math. Phys., 50, 9 (2009) · Zbl 1241.82039
[87] Sheffield, S.; Wilson, DB, Schramm’s proof of Watts’ formula, Ann. Probab., 39, 5, 1844-1863 (2011) · Zbl 1238.60089
[88] Schramm, O.; Zhou, W., Boundary proximity of SLE, Probab. Theory Rel. Fields, 146, 3-4, 435-450 (2010) · Zbl 1227.60101
[89] Werner, W., Powell, W.: Lecture notes on the Gaussian Free Field. arXiv preprint: arXiv:2004.04720 (2020)
[90] Zamolodchikov, A.; Zamolodchikov, A., Conformal bootstrap in Liouville field theory, Nucl. Phys. B, 477, 577-605 (1996) · Zbl 0925.81301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.