×

Local \(\varepsilon\)-regularity criteria for the five dimensional stationary Navier-Stokes equations. (English) Zbl 1515.35181

Summary: We establish interior and boundary \(\varepsilon\)-regularity criteria at one scale for suitable weak solutions to the five dimensional stationary incompressible Navier-Stokes equations which improve previous results in [K. Kang, J. Math. Fluid Mech. 6, No. 1, 78–101 (2004; Zbl 1050.35069)] and [M. Struwe, Commun. Pure Appl. Math. 41, No. 4, 437–458 (1988; Zbl 0632.76034)]. Our proof is based on an iteration argument, Campanato’s method, and interpolation techniques.

MSC:

35Q30 Navier-Stokes equations
35B65 Smoothness and regularity of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids
35D30 Weak solutions to PDEs

References:

[1] J. T. T. A. Beale Kato Majda, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys., 94, 61-66 (1984) · Zbl 0573.76029 · doi:10.1007/BF01212349
[2] L. C. G. P. Berselli Galdi, Regularity criteria involving the pressure for the weak solutions to the Navier-Stokes equations, Proc. Am. Math. Soc., 130, 3585-3595 (2002) · Zbl 1075.35031 · doi:10.1090/S0002-9939-02-06697-2
[3] M. E. Bogovski \(\breve{\imath} \), Solutions of some problems vector analysis, associated with the operators \(\text{div}\) and \(\text{grad} \), Trudy Semin. S. L. Soboleva, 149, 5-40 (1980) · Zbl 0479.58018
[4] L. R. L. Caffarelli Kohn Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[5] H. D. Dong Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Commun. Math. Phys., 273, 785-801 (2007) · Zbl 1156.35442 · doi:10.1007/s00220-007-0259-6
[6] H. X. Dong Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11, 53-69 (2014) · Zbl 1294.35060 · doi:10.4310/DPDE.2014.v11.n1.a3
[7] H. X. Dong Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267, 2606-2637 (2014) · Zbl 1300.35070 · doi:10.1016/j.jfa.2014.08.001
[8] H. R. M. Dong Strain, On partial regularity of steady-state solutions the 6D Navier-Stokes equations, Indiana Univ. Math. J., 61, 2211-2229 (2012) · Zbl 1286.35193 · doi:10.1512/iumj.2012.61.4765
[9] H. K. Dong Wang, Boundary \(\varepsilon \)-regularity criteria for the 3D Navier-Stokes equations, SIAM J. Math. Anal., 52, 1290-1309 (2020) · Zbl 1435.35276 · doi:10.1137/18M1234722
[10] J. M. Frehse Růžička, Regularity for the stationary Navier-Stokes equations in bounded domains, Arch. Rational Mech. Anal., 128, 361-381 (1994) · Zbl 0832.35108 · doi:10.1007/BF00387714
[11] J. M. Frehse Růžička, A new regularity criterion for steady Navier-Stokes equations, Differential Integral Equations, 11, 361-368 (1998) · Zbl 1008.35048
[12] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, \(2^{nd}\) edition, Springer Monographs in Mathematics, Springer, 2011. · Zbl 1245.35002
[13] C. Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z., 165, 193-197 (1979) · Zbl 0405.35064 · doi:10.1007/BF01182469
[14] M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems, in Annals of Mathematics Studies, vol. 105, Princeton University Press, Princeton, NJ, 1983. · Zbl 0516.49003
[15] S. K. T.-P. Gustafson Kang Tsai, Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary, J. Differential Equations, 226, 594-618 (2006) · Zbl 1159.35396 · doi:10.1016/j.jde.2005.12.007
[16] S. K. T.-P. Gustafson Kang Tsai, Interior regularity criteria for suitable weak solutions of the Navier-Stokes equations, Comm. Math. Phys., 273, 161-176 (2007) · Zbl 1126.35042 · doi:10.1007/s00220-007-0214-6
[17] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213-231 (1951) · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[18] H. V. Jia Šverák, Asymptotics of stationary Navier Stokes equations in higher dimensions, Acta Math. Sin. (Engl. Ser.), 34, 598-611 (2018) · Zbl 1386.35327 · doi:10.1007/s10114-017-7397-3
[19] K. Kang, On regularity of stationary Stokes and Navier-Stokes equations near boundary, J. Math. Fluid Mech., 6, 78-101 (2004) · Zbl 1050.35069 · doi:10.1007/s00021-003-0084-3
[20] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248 (1934) · JFM 60.0726.05 · doi:10.1007/BF02547354
[21] F. Lin, A new proof of the Caffarelli-Kohn-Nirenbery theorem, Comm. Pure Appl. Math., 51, 241-257 (1998) · Zbl 0958.35102 · doi:10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
[22] J. W. Liu Wang, Boundary regularity criteria for the 6D steady Navier-Stokes and MHD equations., J. Differential Equations, 264, 2351-2376 (2018) · Zbl 1378.35221 · doi:10.1016/j.jde.2017.10.028
[23] G. Prodi, Un teorema di unicit \(\grave{a}\) per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48, 173-182 (1959) · Zbl 0148.08202 · doi:10.1007/BF02410664
[24] V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66, 535-552 (1976) · Zbl 0325.35064 · doi:10.2140/pjm.1976.66.535
[25] V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55, 97-112 (1977) · Zbl 0357.35071 · doi:10.1007/BF01626512
[26] V. Scheffer, The Navier-Stokes equations in space dimension four, Comm. Math. Phys., 61, 41-68 (1978) · Zbl 0403.35088 · doi:10.1007/BF01609467
[27] V. Scheffer, The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73, 1-42 (1980) · Zbl 0451.35048 · doi:10.1007/BF01942692
[28] G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4, 1-29 (2002) · Zbl 0997.35044 · doi:10.1007/s00021-002-8533-z
[29] G. A. Seregin, A note on local boundary regularity for the Stokes system, J. Math. Sci. (N.Y.), 166, 86-90 (2010) · Zbl 1288.35376 · doi:10.1007/s10958-010-9847-7
[30] G. A. T. N. V. A. Seregin Shilkin Solonnikov, Boundary partial regularity for the Navier-Stokes equations, J. Math. Sci. (N.Y.), 132, 339-358 (2006) · Zbl 1095.35031 · doi:10.1007/s10958-005-0502-7
[31] J. Serrin, The initial value problem for the Navier-Stokes equations, in: Nonlinear Problems, Proc. Sympos., Madison, WI, Univ. of Wisconsin Press, Madison, WI, 1963, 69-98. · Zbl 0115.08502
[32] M. Struwe, On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41, 437-458 (1988) · Zbl 0632.76034 · doi:10.1002/cpa.3160410404
[33] M. Struwe, Regular solutions of the stationary Navier-Stokes equations on \(\mathbb{R}^5\), Math. Ann., 302, 719-741 (1995) · Zbl 0861.35075 · doi:10.1007/BF01444514
[34] G. Z. Tian Xin, Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7, 221-257 (1999) · Zbl 0939.35139 · doi:10.4310/CAG.1999.v7.n2.a1
[35] T.-P. Tsai, Lecture on Navier-Stokes Equations, in Graduate Studies in Mathematics, vol.192, American Mathematical Society, Providence, RI, 2018. · Zbl 1414.35001
[36] A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differential Equations Appl., 14, 753-785 (2007) · Zbl 1142.35066 · doi:10.1007/s00030-007-6001-4
[37] Y. G. Wang Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations, J. Differential Equations, 256, 1224-1249 (2014) · Zbl 1283.35069 · doi:10.1016/j.jde.2013.10.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.