×

Boundary partial regularity for the Navier-Stokes equations. (Russian, English) Zbl 1095.35031

J. Math. Sci., New York 132, No. 3, 339-358 (2006); translation from Zap. Nauchn. Semin. POMI 310, 158-190, 228 (2004).
The authors study the local regularity of solutions to the incompressible Navier-Stokes equations near the generally curved boundary. Under the assumption that the boundary is uniformly \(C^2\), they prove the regularity for the suitable weak solution near the boundary in the forms being known either in the interior of the domain or near the flat boundary. As an easy consequence it follows that the one-dimensional parabolic measure of points, where the solution is not Hölder continuous in any neighborhood of the point (i.e. the one-dimensional parabolic measure of the singular set), is zero.
The proof is based on local transformation of the coordinates near the boundary which makes the boundary flat, however, changes slightly the Navier-Stokes system. Thus, a carefull study of the perturbed system is also performed.

MSC:

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35D10 Regularity of generalized solutions of PDE (MSC2000)

References:

[1] O. V. Besov, V. P. Il’in, and S. M. Nikolskii, Integral Representations of Functions and Embedding Theorems [in Russian], Nauka, Moscow (1975).
[2] L. Caffarelli, R. V. Kohn, and L. Nirenberg, ”Partial regularity of suitable weak solutions of the Navier-Stokes equations,” Comm. Pure Appl. Math., 35, 771–831 (1982). · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[3] H. J. Choe and J. L. Lewis, ”On the singular set in the Navier-Stokes equations,” J. Funct. Anal., 175, 348–369 (2000). · Zbl 0965.35115 · doi:10.1006/jfan.2000.3582
[4] L. Escauriaza, G. Seregin, and V. Sverak, ”L 3,solutions to the Navier-Stokes equations and backward uniqueness,” Usp. Mat. Nauk, 58, 3–44 (2003).
[5] R. Farwig and H. Sohr, ”The stationary and nonstationary Stokes system in exterior domains with nonzero divergence and nonzero boundary data,” Math. Meth. Appl. Sci., 17, 269–291 (1994). · Zbl 0798.35125 · doi:10.1002/mma.1670170405
[6] Y. Giga and H. Sohr, ”Abstract L p -estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,” J. Funct. Anal., 102, 72–94 (1991). · Zbl 0739.35067 · doi:10.1016/0022-1236(91)90136-S
[7] E. Hopf, ”Uber die Anfangswertaufgabe fur die hydrodynamischen Grundgleichungen,” Math. Nachr., 4, 213–231 (1950). · Zbl 0042.10604
[8] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Fluid [in Russian], 2nd ed., Nauka, Moscow (1970). · Zbl 0215.29004
[9] O. A. Ladyzhenskaya and G. A. Seregin, ”On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,” J. Math. Fluid Mech., 1, 356–387 (1999). · Zbl 0954.35129 · doi:10.1007/s000210050015
[10] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monographs, 23, Amer. Math. Soc. (1967). · Zbl 0164.12302
[11] F.-H. Lin, ”A new proof of the Caffarelli-Kohn-Nirenberg theorem,” Comm. Pure Appl. Math., 51, 241–257 (1998). · Zbl 0958.35102 · doi:10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
[12] P. Maremonti and V. Solonnikov, ”On estimates of solutions to the nonstationary Stokes problem in the anisotropic Sobolev spaces with a mixed norm,” Zap. Nauchn. Semin. POMI, 293, 124–150 (1994). · Zbl 0909.35105
[13] V. Scheffer, ”Hausdorff measure and the Navier-Stokes equations,” Comm. Math. Phys., 55, 97–112 (1977). · Zbl 0357.35071 · doi:10.1007/BF01626512
[14] G. A. Seregin, ”Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary,” J. Math. Fluid Mech., 4, 1–29 (2002). · Zbl 0997.35044 · doi:10.1007/s00021-002-8533-z
[15] G. A. Seregin, ”Differentiability properties of weak solutions of the Navier-Stokes equations,” St. Petersb. Math. J., 14, 147–178 (2003). · Zbl 1039.35080
[16] G. A. Seregin, ”Some estimates near the boundary for solutions to the nonstationary linearized Navier-Stokes equations,” Zap. Nauchn. Semin. POMI, 271, 204–223 (2000). · Zbl 1037.35059
[17] G. A. Seregin, ”Remarks on regularity of weak solutions to the Navier-Stokes system near the boundary,” Zap. Nauchn. Semin. POMI, 295, 168–179 (2003). · Zbl 1083.35098
[18] V. A. Solonnikov, ”Estimates of solutions of the nonstationary linearized system of Navier-Stokes equations,” Trudy Mat. Inst. AN SSSR, 70, 213–317 (1964). · Zbl 0163.33803
[19] V. A. Solonnikov, ”Estimates of solutions of the nonstationary Navier-Stokes system,” Zap. Nauchn. Semin. POMI, 38, 153–231 (1972).
[20] V. A. Solonnikov, ”Estimates of solutions of the Stokes equations in Sobolev spaces with a mixed norm,” Zap. Nauchn. Semin. POMI, 288, 204–231 (2002). · Zbl 1068.35093
[21] V. A. Solonnikov, ”On estimates of solutions of the nonstationary Stokes problem in anisotropic S. L. Sobolev spaces and estimate of the resolvent of the Stokes problem,” Usp. Mat. Nauk, 58, 123–156 (2003).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.