×

Regularity criteria for suitable weak solutions of the Navier-Stokes equations near the boundary. (English) Zbl 1159.35396

Summary: We present some new regularity criteria for “suitable weak solutions” of the Navier-Stokes equations near the boundary in dimension three. We prove that suitable weak solutions are Hölder continuous up to the boundary provided that the scaled mixed norm \(L^{p,q}_{x,t}\) source with \(3/p+2/q\leq 2\), \(2<q\leq \infty\), \((p,q)\neq (3/2,\infty)\) is small near the boundary. Our methods yield new results in the interior case as well. Partial regularity of weak solutions is also analyzed under some additional integral conditions.

MSC:

35Q30 Navier-Stokes equations
35B65 Smoothness and regularity of solutions to PDEs
35D10 Regularity of generalized solutions of PDE (MSC2000)
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067
[2] Chen, Z.-M.; Price, W. G., Morrey space techniques applied to the interior regularity problem of the Navier-Stokes equations, Nonlinearity, 14, 6, 1453-1472 (2001) · Zbl 1022.35036
[3] Choe, H.; Lewis, J. L., On the singular set in the Navier-Stokes equations, J. Funct. Anal., 175, 2, 348-369 (2000) · Zbl 0965.35115
[4] Escauriaza, L.; Seregin, G.; Šverák, V., \(L^{3, \infty}\)-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk. Uspekhi Mat. Nauk, Math. Surveys, 58, 2, 211-250 (2003), (in Russian); translation from Russian in · Zbl 1064.35134
[5] Fabes, E. B.; Jones, B. F.; Rivière, N. M., The initial value problem for the Navier-Stokes equations with data in \(L^p\), Arch. Ration. Mech. Anal., 45, 222-240 (1972) · Zbl 0254.35097
[6] Giga, Y., Solutions for semilinear parabolic equations in \(L^p\) and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62, 2, 186-212 (1986) · Zbl 0577.35058
[7] Giga, Y.; Sohr, H., Abstract \(L^p\) estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102, 72-94 (1991) · Zbl 0739.35067
[8] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213-231 (1951) · Zbl 0042.10604
[9] Kang, K., On boundary regularity of the Navier-Stokes equations, Comm. Partial Differential Equations, 29, 7-8, 955-987 (2004) · Zbl 1091.76012
[10] Ladyzenskaja, O. A., Uniqueness and smoothness of generalized solutions of Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 5, 169-185 (1967), (in Russian) · Zbl 0194.12805
[11] Ladyzenskaja, O. A.; Seregin, G. A., On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1, 356-387 (1999) · Zbl 0954.35129
[12] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 64, 193-248 (1934) · JFM 60.0726.05
[13] Lin, F., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51, 3, 241-257 (1998) · Zbl 0958.35102
[14] Nečas, J.; Růžička, M.; Šverák, V., On Leray’s self-similar solutions of the Navier-Stokes equations, Acta Math., 176, 2, 283-294 (1996) · Zbl 0884.35115
[15] Prodi, G., Un teorema di unicita per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl. (4), 48, 173-182 (1959), (in Italian) · Zbl 0148.08202
[16] Scheffer, V., Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66, 2, 535-552 (1976) · Zbl 0325.35064
[17] Scheffer, V., Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 55, 97-112 (1977) · Zbl 0357.35071
[18] Scheffer, V., The Navier-Stokes equations on a bounded domain, Comm. Math. Phys., 73, 1, 1-42 (1980) · Zbl 0451.35048
[19] Scheffer, V., Boundary regularity for the Navier-Stokes equations in a half-space, Comm. Math. Phys., 85, 2, 275-299 (1982) · Zbl 0508.35067
[20] Seregin, G. A., Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 271, 204-223 (2000)
[21] Seregin, G. A., Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4, 1, 1-29 (2002) · Zbl 0997.35044
[22] Seregin, G. A., On smoothness of \(L_{3, \infty}\)-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332, 1, 219-238 (2005) · Zbl 1072.35146
[23] Seregin, G. A.; Šverák, V., Navier-Stokes equations with lower bounds on the pressure, Arch. Ration. Mech. Anal., 163, 1, 65-86 (2002) · Zbl 1002.35094
[24] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 9, 187-195 (1962) · Zbl 0106.18302
[25] Serrin, J., The initial value problem for the Navier-Stokes equations, (Nonlinear Problems, Proc. Sympos.. Nonlinear Problems, Proc. Sympos., Madison, WI (1963), Univ. of Wisconsin Press: Univ. of Wisconsin Press Madison, WI), 69-98 · Zbl 0115.08502
[26] Sohr, H., Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math. Z., 184, 3, 359-375 (1983) · Zbl 0506.35084
[27] Sohr, H., A regularity class for the Navier-Stokes equations in Lorentz spaces, J. Evol. Equ., 1, 4, 441-467 (2001) · Zbl 1007.35051
[28] Sohr, H.; Von Wahl, W., On the regularity of the pressure of weak solutions of Navier-Stokes equations, Arch. Math., 46, 5, 428-439 (1986) · Zbl 0574.35070
[29] Solonnikov, V. A., Estimates of solutions of the Stokes equations in S.L. Sobolev spaces with a mixed norm, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 288, 204-231 (2002)
[30] Struwe, M., On partial regularity results for the Navier-Stokes equations, Comm. Pure Appl. Math., 41, 437-458 (1988) · Zbl 0632.76034
[31] Tian, G.; Xin, Z., Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7, 2, 221-257 (1999) · Zbl 0939.35139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.