×

Simulation of polyhedral convex contoured distributions. (English) Zbl 1386.65055

Summary: In low dimensions, the relatively easily implementable acceptance-rejection method for generating polyhedral convex contoured uniform distributions is compared to more sophisticated particular methods from the literature, and applied to drug combination studies. Based upon a stochastic representation, the method is extended to the general class of polyhedral convex contoured distributions of known dimension. Based upon a geometric measure representation, an algorithm for simulating corresponding probabilities of rather arbitrary random events is derived.

MSC:

65C50 Other computational problems in probability (MSC2010)
60E05 Probability distributions: general theory
62H10 Multivariate distribution of statistics

Software:

lrs; gensphere

References:

[1] Arnold, B, Castillo, E, Sarabia, JM: Multivariate distributions defined in terms of contoures. J. Stat. Plan. Infer. 138, 4158-4171 (2008). · Zbl 1146.62037 · doi:10.1016/j.jspi.2008.03.033
[2] Avis, D: lrs: A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm. Birkhäuser Verlag, Basel (2000). doi:10.1007/978-3-0348-8438-9_9. · Zbl 0960.68171
[3] Balkema, G, Embrechts, P, Nolde, N: Meta densities and the shape of their sample clouds. J Multiv Analysis. 101(7), 1738-1754 (2010). · Zbl 1198.60012 · doi:10.1016/j.jmva.2010.02.010
[4] Berenbaum, MC: What is synergy?Pharmacol. Rev. 41(2), 93-141 (1989).
[5] Böhm, J, Hertel, E: Mathematische Monographien: Polyedergeometrie in n- dimensionalen Räumen konstanter Krümmung, vol 14. VEB Deutscher Verlag der Wissenschaften, Berlin (1980). · Zbl 0464.51009
[6] Cutler, B.; Dorsey, J.; McMillan, L., Simplification and improvement of tetrahedral models for simulation (2004), New York
[7] Fang, KT, Yang, ZH: On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains. Stat. Probab. Lett. 46, 113-120 (2000). · Zbl 0974.62060 · doi:10.1016/S0167-7152(99)00095-4
[8] Fang, KT, Kotz, S, Ng, KW: Monographs on Statistics and Applied Probability: Symmetric Multivariate and Related Distributions, vol 36.Chapman & Hall, New York (1990). · Zbl 0699.62048 · doi:10.1007/978-1-4899-2937-2
[9] Fernandez, C, Osiewalski, J: Steel, MFJ: Modeling and inference with v-spherical distributions. J Am. Stat. Assoc. 90, 1331-1340 (1995). · Zbl 0868.62045
[10] Fukuda, K, Prodon, A: Double Description Method Revisited. In: Combinatorics and Computer Science. Springer- Verlag, Berlin, Heidelberg (1996). doi:10.1007/3-540-61576-8_77. · Zbl 1177.60019
[11] Gupta, A, Song, D: lp-norm spherical distribution. J. Stat. Plann. Infer. 60(2), 241-260 (1997). · Zbl 0900.62270 · doi:10.1016/S0378-3758(96)00129-2
[12] Henschel, V, Richter, W-D: Geometric generalization of the exponential law. J. Multivar. Anal. 81, 189-204 (2002). doi:10.1006/jmva.2001.2001. · Zbl 1003.60019 · doi:10.1006/jmva.2001.2001
[13] Kalke, S, Richter, W-D: Simulation of the p- generalized gaussian distribution. J. Stat. Comput. Simul. 83(4), 641-667 (2013). doi:10.1080/00949655.2011.631187. · Zbl 1431.62017 · doi:10.1080/00949655.2011.631187
[14] Kamiya, H, Takemura, A, Kuriki, S: Star-shaped distributions and their generalizations. J. Stat. Plan. Infer. 138, 3429-3447 (2008). · Zbl 1145.62043 · doi:10.1016/j.jspi.2006.03.016
[15] von Neumann, J: Various techniques used in connection with random digits.monte carlo methods. Nat. Bureau Standards. 12, 36-38 (1951).
[16] Nolan, J: An R package for modeling and simulating generalized spherical and related distributions. J. Stat. Distrib. Appl. 3:14, 11 (2016). · Zbl 1349.62013 · doi:10.1186/s40488-016-0053-0
[17] Richter, W-D: Eine geometrische Methode in der Stochastik. Rostocker Mathematisches Kolloquium. 44, 63-72 (1991). · Zbl 0752.60002
[18] Richter, W-D: Continuous ln,p- symmetric distributions. Lith. Math. J. 49(1), 93-108 (2009). doi:10.1007/s10986-009-9030-3. · Zbl 1177.60019 · doi:10.1007/s10986-009-9030-3
[19] Richter, W-D: Geometric and stochastic representations for elliptically contoured distributions. Commun. Stat. Theory Methods. 42, 579-602 (2013). doi:10.1080/03610926.2011.611320. · Zbl 1277.60032 · doi:10.1080/03610926.2011.611320
[20] Richter, W-D: Geometric disintegration and star- shaped distributions. J. Stat. Distrib. Appl. 1:20, 24 (2014). doi:10.1186/s40488-014-0020-6. · Zbl 1330.60028 · doi:10.1186/s40488-014-0020-6
[21] Richter, W-D: Convex and radially concave contoured distributions. J. Probab. Stat. 2015, 12 (2015a). doi:10.1155/2015/165468. · Zbl 1426.60016 · doi:10.1155/2015/165468
[22] Richter, W-D: Norm contoured distributions in ℝ \(2\mathbb{R}^2\). Lect. Notes Seminario Interdisciplinare di Matematica. 12, 179-199 (2015b). · Zbl 1502.60018
[23] Richter, W-D, Schicker, K: Ball numbers of platonic bodies. J. Math. Anal. Appl. 416(2), 783-799 (2014). doi:10.1016/j.jmaa.2014.03.007. · Zbl 1321.52010 · doi:10.1016/j.jmaa.2014.03.007
[24] Richter, W-D, Schicker, K: Polyhedral star-shaped distributions. J. Probab. Stat. 2017, 35 (2017). · Zbl 1431.60016 · doi:10.1155/2017/7176897
[25] Rocchini, C, Cignoni, P: Generating random points in a tetrahedron. J. Graphics Tools. 5(4), 9-12 (2000). · Zbl 0994.68165 · doi:10.1080/10867651.2000.10487528
[26] Sarabia, JM, Gomez-Deniz, E: Construction of multivariate distributions: a review of some results. SORT. 32(1), 3-36 (2008). With discussion by Pardo, M.C., 39-42 and Navarro, J., 43-46. · Zbl 1178.60014
[27] Tan, M, Fang, HB, Tian, GL, Houghton, PJ: Experimental design and sample size determination for testing synergism in drug combination studies based on uniform measures. Stat. Med. 22, 2091-2100 (2003). doi:10.1002/sim.1467. · doi:10.1002/sim.1467
[28] Tian, GL, Fang, HB, Tan, M, Qin, H, Tang, ML: Uniform distributions in a class of convex polyhedrons with applications to drug combination studies. J. Multivariate Anal. 100, 1854-1865 (2009). doi:10.1016/j.jmva.2009.02.011. · Zbl 1165.62042 · doi:10.1016/j.jmva.2009.02.011
[29] Ziegler, GM: Lectures on Polytopes. Springer-Verlag, Berlin, Heidelberg (1995). · Zbl 0823.52002 · doi:10.1007/978-1-4613-8431-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.