×

Continuous \(l_{n,p}\)-symmetric distributions. (English) Zbl 1177.60019

Summary: For \(p > 0\), the \(l_{n,p}\)-generalized surface measure on the \(l_{n,p}\)-unit sphere is studied and used for deriving a geometric measure representation for \(l_{n,p}\)-symmetric distributions having a density.

MSC:

60E05 Probability distributions: general theory
Full Text: DOI

References:

[1] T.W. Anderson, An Introduction to Multivariate Statistical Analysis. 2nd ed., Wiley, N.Y., 1984. · Zbl 0651.62041
[2] T.W. Anderson and K.T. Fang, On the theory of multivariate elliptically contoured distributions and their applications, in K.T. Fang and T.W. Anderson (Eds.), Statistical Inference in Elliptically Contoured and Related Distributions, Allerton Press Inc., N.Y., 1990, pp. 1–23. · Zbl 0781.62066
[3] K. Breitung and W.-D. Richter, A geometric approach to an asymptotic expansion for large deviation probabilities of Gaussian random vectors, J. Multivariate Anal., 58(1):1–20, 1996. · Zbl 0864.41026 · doi:10.1006/jmva.1996.0036
[4] K.T. Fang and T.W. Anderson (Eds.), Statsitical Inference in Elliptically Contoured and Related Distributions, Allerton Press Inc., N.Y., 1990. · Zbl 0747.00016
[5] K.T. Fang, S. Kotz, and K.W. Ng, Symmetric Multivariate and Related Distributions, Chapman and Hall, London, New York, 1990. · Zbl 0699.62048
[6] K.T. Fang and Y.T. Zang, Generalized Multivariate Analysis, Springer Verlag, N.Y., 1990.
[7] V. Fatalov and W.-D. Richter, Gaussian probabilities of large deviations for fixed and increasing dimensions, J. Contemporary Math. Anal., 27(1):1–16, 1992. · Zbl 0828.60019
[8] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin–Heidelberg–New York, 1969. · Zbl 0176.00801
[9] R. Fisher, T. Lewis, and B. Embleton, Statistical Analysis of Spherical Data, University Press, Cambridge, 1987. · Zbl 0651.62045
[10] I.R. Goodman and S. Kotz, Multivariate {\(\theta\)}-generalized normal distributions, J. Multivariate Anal., 3:204–219, 1973. · Zbl 0277.62040 · doi:10.1016/0047-259X(73)90023-7
[11] A. Gupta and D. Song, l p -norm spherical distributions, J. Statist. Plann. Inference, 60:241–260, 1997. · Zbl 0900.62270 · doi:10.1016/S0378-3758(96)00129-2
[12] A. Gupta and T. Varga, Elliptically Contoured Models in Statistics, Kluwer Academic publishers, Dordrecht, Boston, London, 1993. · Zbl 0789.62037
[13] V. Henschel and W.-D. Richter, Geometric generalization of the exponential law, J. Multivariate Anal., 81:189–204, 2002. · Zbl 1003.60019 · doi:10.1006/jmva.2001.2001
[14] C. Ittrich, D. Krause, and W.-D. Richter, Probabilities and large quantiles of noncentral generalized chi-square distributions, Statistics, 34:53–101, 2000. · Zbl 0977.62013 · doi:10.1080/02331880008802705
[15] C. Ittrich and W.-D. Richter, Exact tests and confidence regions in nonlinear regression, Statistics, 39(1):13–42, 2005. · Zbl 1070.62054
[16] D.R. Jensen and D.E. Ramirez, Some exact properties of Cook’s d i statistic, in N. Balakrishnan and C. Rao (Eds.), Handbook of Statistics, vol. 16, Elsevier Science Publishers, Amsterdam, 1998, pp. 387–402. · Zbl 0905.62075
[17] M. Johnson, Multivariate Statistical Simulation, J. Wiley Sons, N.Y., 1987. · Zbl 0604.62056
[18] N.L. Johnson and S. Kotz, Distributions in Statistics-Continuous Univariate Distributions-2, Houghton Mifflin Co, Boston, 1970. · Zbl 0213.21101
[19] J.D. Kalbfleisch and R.L. Prentice, The Statistical Analysis of Failure Time Data, J. Wiley Sons, N.Y., 1980. · Zbl 0504.62096
[20] D. Kelker, Distribution theory of spherical distributions and a location-scale parameter generalization, Sankhya Ser. A, 32:419–430, 1970. · Zbl 0223.60008
[21] D. Krause and W.-D. Richter, Exact probabilities of correct classifications for uncorrelated repeated measurements from elliptically contoured distributions, J. Multivariate Anal., 89:36–69, 2004. · Zbl 1036.62052 · doi:10.1016/S0047-259X(03)00090-3
[22] F. Morgan, Geometric Measure Theory, Academic Press, San Diego, 1995. · Zbl 0819.49024
[23] A. Naor, The surface measure and cone measure on the sphere of l p n , Trans. Am. Math. Soc., 359(3):1045–1080, 2007. · Zbl 1109.60006 · doi:10.1090/S0002-9947-06-03939-0
[24] G. Pap and W.-D. Richter, Zum asymptotischen Verhalten der Dichten gewisser Funktionale Gaußscher Zufallsvektoren, Math. Nachr., 135:119–124, 1988. · Zbl 0653.60026 · doi:10.1002/mana.19881350112
[25] S.T. Rachev and L. Rüschendorf, Approximate independence of distributions on spheres and their stability properties, Ann. Probab., 19(3):1311–1337, 1991. · Zbl 0732.62014 · doi:10.1214/aop/1176990346
[26] W.-D. Richter, Laplace–Gauss integrals, Gaussian measure asymptotic behavior and probabilities of moderate deviations, Z. Anal. Anw., 4(3):257–267, 1985. · Zbl 0572.60035
[27] W.-D. Richter, Zur Restgliedabschätzung im mehrdimensionalen integralen Zentralen Grenzwertsatz der Wahrscheinlichkeitstheorie, Math. Nachr., 135:103–117, 1988. · Zbl 0657.60031 · doi:10.1002/mana.19881350111
[28] W.-D. Richter, Eine geometrische Methode in der Stochastik., Rostock. Math. Kolloq., 44:63–72, 1991. · Zbl 0752.60002
[29] W.-D. Richter, A geometric approach to the Gaussian law, in V Mammitzsch and Schneeweiß (Eds.), Symposia Gaussiana, Conf. B, W. de Gruyter and Co., Berlin, New York, 1995, pp. 25–45. · Zbl 0842.62038
[30] W.-D. Richter, Generalized spherical and simplicial coordinates, J. Math. Anal. Appl., 336:1187–1202, 2007. · Zbl 1143.60017 · doi:10.1016/j.jmaa.2007.03.047
[31] W.-D. Richter, On l 2,p -circle numbers, Lith. Math. J., 48(2):228–234, 2008. · Zbl 1159.28003 · doi:10.1007/s10986-008-9002-z
[32] W.-D. Richter, On the {\(\pi\)}-function for non-convex l 2,p -circle discs, Lith. Math. J., 48(3):332–338, 2008. · Zbl 1206.28005 · doi:10.1007/s10986-008-9016-6
[33] W.-D. Richter and J. Schumacher, Asymptotic expansions for large deviation probabilities of noncentral generalized chi-square distributions, J. Multivariate Anal., 75:184–218, 2000. · Zbl 0976.60037 · doi:10.1006/jmva.2000.1899
[34] W.-D. Richter and J. Steinebach, A geometric approach to finite sample and large deviation properties in two-way ANOVA with spherically distributed error vectors, Metrika, 41:325–353, 1994. · Zbl 0815.62046 · doi:10.1007/BF01895327
[35] W.-D. Richter and V.V. Ulyanov, Two sides estimates for the Gaussian measure of the complements of balls in Hilbert space, Probab. Theory Appl., 36(4):805–806, 1991.
[36] G. Schechtman and J. Zinn, On the volume of the intersection of two l n,p -balls, Proc. Am. Math. Soc., 110(1):217–224, 1990. · Zbl 0704.60017
[37] G.E. Schilov, Mathematical Analysis. Functions of Several Real Variables, Nauka, Moscow, 1972 (in Russian).
[38] I.J. Schoenberg, Metric spaces and completely monotone functions, Ann. Math., 39:811–841, 1938. · JFM 64.0617.03 · doi:10.2307/1968466
[39] D. Song and A.K. Gupta, l p -norm uniform distributions, Proc. Am. Math. Soc., 125(2):595–601, 1997. · Zbl 0866.62026 · doi:10.1090/S0002-9939-97-03900-2
[40] M.T. Subbotin, On the law of frequency of errors, Mat. Sbornik, 31:296–301, 1923. · JFM 49.0370.01
[41] P.J. Szablowski, Uniform distribution on spheres in finite dimensional l {\(\alpha\)} and their generalisations, J. Multivariate Anal., 64(2):103–117, 1998. · Zbl 0893.62044 · doi:10.1006/jmva.1997.1718
[42] T. Taguchi, On a generalization of Gaussian distribution, Ann. Inst. Stat. Math., 30:211–242, 1978. · Zbl 0444.62022 · doi:10.1007/BF02480215
[43] G. Watson, Statistics on Spheres, J. Wiley Sons, N.Y., 1983. · Zbl 0646.62045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.