×

\(K\)-theory of monoid algebras and a question of Gubeladze. (English) Zbl 1425.19001

The algebraic \(K\) theory of smooth algebraic varieties satisfies homotopy invariance. A particular consequenece of this is that the \(K\)-theory of a commutative Noetherian regular ring does not change under polynomial extensions. One can ask a more general question: if \(R\) is such a ring, how is the \(K\)-theory of \(R\) related to the \(K\)-theory of \(R[M]\) where \(M\) is a monoid algebra? Free monoids are covered under homotopy invariance.
The research in the article under review explores this question for the specific monoid algebra \(M\), which is the free monoid algebra in four generators \(x_1,x_2,x_3,x_4\) modulo the relation \(x_1x_2 = x_3x_4\). They prove that \(K_1(R)\cong K_1(R[M])\), but the same is not true for higher \(K\)-groups, showing some failure of invariance here for monoid algebras.
They also use their theorem to show that the Serre dimension of \(R[x_1x_3,x_1x_4,x_2x_3,x_2x_4]\) is less than or equal to 1 whenever \(R\) is a one-dimensional commutative Noetherian ring, answering a special case of a question of H. Lindel [J. Algebra 172, No. 2, 301–319 (1995; Zbl 0839.13006)].
The paper is a good contribution to the theory of how \(K\)-theory behaves under monoid-algebra extensions of rings.

MSC:

19D50 Computations of higher \(K\)-theory of rings
13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)
14F35 Homotopy theory and fundamental groups in algebraic geometry

Citations:

Zbl 0839.13006

References:

[1] D. F.Anderson, Projective modules over subrings of k[X, Y] generated by monomials, Pacific J. Math.79 (1978), 5-17. · Zbl 0372.13006
[2] M.Artin and B.Mazur, Etale Homotopy, Lecture Notes in Mathematics, Volume 100, xiv+461 pp. (Springer, Berlin-New York, 1969). · Zbl 0182.26001
[3] H.Bass, Algebraic K-Theory (W. A. Benjamin, Inc., New York-Amsterdam, 1968). · Zbl 0174.30302
[4] W.Bruns and J.Gubeladze, Polytopes, Rings, and K-Theory, Springer Monographs in Mathematics, xiv+461 pp. (Springer, Dordrecht, 2009). · Zbl 1168.13001
[5] G.Cortiñas, C.Haesemeyer, M.Walker and C.Weibel, K-theory of cones of smooth varieties, J. Algebraic Geom.22 (2013), 13-34. · Zbl 1267.14013
[6] G.Cortiñas, C.Haesemeyer and C.Weibel, K-regularity, cdh-fibrant Hochschild homology, and a conjecture of Vorst, J. Amer. Math. Soc.21(2) (2008), 547-561. · Zbl 1173.19002
[7] A.Dhorajia and M.Keshari, A note on cancellation of projective modules, J. Pure Appl. Algebra216 (2012), 126-129. · Zbl 1232.13007
[8] P. A.Gracía-Sanchéz and J. C.Rosales, Finitely Generated Commutative Monoids (Nova Sc. Publishers Inc., Commack, New York, 1999). · Zbl 0966.20028
[9] J.Gubeladze, Anderson’s conjecture and the maximal class of monoid over which projective modules are free, Math. USSR-Sb.63 (1988), 165-188. · Zbl 0668.13011
[10] J.Gubeladze, Classical Algebraic K-Theory of Monoid Algebras, Lecture Notes in Mathematics, Volume 1437, pp. 36-94 (Springer, Berlin, 1990). · Zbl 0731.19001
[11] J.Gubeladze, Geometric and algebraic representations of commutative cancellative monoids, Proc. A. Razmadze Math. Inst.113 (1995), 31-81. · Zbl 0871.19001
[12] J.Gubeladze, Nontriviality of SK_1(R[M]), J. Pure Appl. Algebra104 (1995), 169-190. · Zbl 0840.19002
[13] J.Gubeladze, K-theory of affine toric varieties, Homology, Homotopy Appl.1 (1999), 135-145. · Zbl 0920.19001
[14] R.Hartshorne, Algebraic Geometry, Graduate Text in Mathematics, Volume 52 (Springer, New York, 1997). · Zbl 0367.14001
[15] M.Kang, Projective modules over some polynomial rings, J. Algebra59 (1979), 65-76. · Zbl 0419.13006
[16] G. R.Kemf, Some elementary proofs of basic theorems in the cohomology of quasi-coherent sheaves, Rocky Mountain J. Math.10(3) (1980), 637-646. · Zbl 0465.14008
[17] M.Keshari and H. P.Sarwar, Serre dimension of monoid algebras, Proc. Math. Sci. Indian Acad. Sci.127(2) (2017), 269-280. · Zbl 1408.13020
[18] A.Krishna, Zero cycles on a threefold with isolated singularities, J. Reine Angew. Math.594 (2006), 93-115. · Zbl 1096.14004
[19] A.Krishna, An Artin-Rees theorem in K-theory and applications to zero cycles, J. Algebraic Geom.19 (2010), 555-598. · Zbl 1193.14010
[20] A.Krishna and M.Morrow, Analogues of Gersten’s conjecture for singular schemes, Selecta Math. (N.S.)23 (2017), 1235-1247. · Zbl 1362.19004
[21] W.Krull, Dimensionstheorie in Stellenringen, J. Reine Angew. Math.179 (1938), 204-226. · JFM 64.0078.02
[22] H.Lindel, Unimodular elements in projective modules, J. Algebra172(2) (1995), 301-319. · Zbl 0839.13006
[23] Q.Liu, Algebraic Geometry and Arithmetic Curves, Oxford Graduate Text in Mathematics, Volume 6 (Oxford Science Publications, Oxford, 2002). · Zbl 0996.14005
[24] J.-L.Loday, Cyclic Homology, Grundlehern der Mathematischen Wissenschaften, Volume 301 (Springer, Berlin, 1992). · Zbl 0780.18009
[25] H.Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics, Volume 8 (Cambridge university press, Cambridge, 1997).
[26] M.Morrow, Pro unitality and pro excision in algebraic K-theory and cyclic homology, J. Reine Angew. Math. (2015), to appear, https://arxiv.org/pdf/1404.4179.pdf. · Zbl 1393.19003
[27] M.Morrow, Pro cdh-descent for cyclic homology and K-theory, J. Inst. Math. Jussieu15(3) (2016), 539-567. · Zbl 1366.19005
[28] D.Quillen, Higher algebraic K-theory I, Lect. Notes Math.341 (1973), 85-147. · Zbl 0292.18004
[29] A.Roy, Application of patching diagrams to some questions about projective modules, J. Pure Appl. Algebra24(3) (1982), 313-319. · Zbl 0484.13008
[30] V.Srinivas, K_1 of the cone over a curve, J. Reine Angew. Math.381 (1987), 37-50. · Zbl 0631.14007
[31] R. G.Swan, Gubeladze’s proof of Anderson’s conjecture, Contemp. Math124 (1992), 215-250. · Zbl 0742.13005
[32] R. W.Thomason and T.Trobaugh, Higher Algebraic K-Theory Of Schemes And Of Derived Categories, The Grothendieck Festschrift III, Progress in Mathematics, Volume 88, pp. 247-435 (Birkhäuser, Boston, MA, 1990). · Zbl 0731.14001
[33] T.Vorst, Localization of the K-theory of polynomial extensions. With an appendix by Wilberd van der Kallen, Math. Ann.244(1) (1979), 33-53. · Zbl 0415.13005
[34] C. A.Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Volume 38 (Cambridge University Press, Cambridge, 1994). · Zbl 0797.18001
[35] C. A.Weibel, Cyclic homology of Schemes, Proc. Amer. Math. Soc.124 (1996), 1655-1662. · Zbl 0855.19002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.