×

Zero cycles on a threefold with isolated singularities. (English) Zbl 1096.14004

Let \(X\) be a quasi-projective threefold over a field \(k\) of characteristic zero with Cohen-Macaulay isolated singularities. Let \(\text{CH}^3(X)\) denote the Chow group of zero cycles on \(X\) as is defined in [M. Levine and C. A. Weibel, J. Reine Angew. Math. 359, 106–120 (1985; Zbl 0555.14004)]. Let \(F^3K_0(X)\) denote the subgroup of the Grothendieck group of vector bundles \(K_0(X)\), generated by the classes of smooth codimension three closed points on \(X\). Furthermore for any closed subscheme \(Z\) of \(X\), let \(K_0(X, Z)\) be the relative \(K\)-group as defined in [K. R. Coombes and V. Srinivas, Invent. Math. 70, 1–12 (1982; Zbl 0507.14014)], and let \(F^3K_0(X,Z)\) be the subgroup of \(K_0(X,Z)\) generated by the classes of smooth points of \(X- Z\). Let \(p: \widetilde X\to X\) be a resolution of singularities such that \(p\) is a blow up of \(X\) along a closed subscheme \(Z\) whose support is the set of singular points of \(X\), and let \(E\) be the reduced exceptional divisor on \(\widetilde X\). Under these circumstances the main theorem of this paper shows that for all sufficiently large \(n\), the natural surective maps \(F^3K_0(\widetilde X,nE)\to F^3K_0(\widetilde X,(n-1)E)\) and \(F^3K_0(X)\to F^3K_0(\widetilde X,nE)\) are isomorphisms.
Since the map CH\(^3(X)\to F^3K_0(X)\) is shown by M. Levine [Proc. Symp. Pure Math. 46, 451–462 (1987; Zbl 0635.14007)] to be an isomorphism when \(k\) is algebraically closed and \(X\) is affine or projective, the theorem implies in this case that \(\text{CH}^3(X)\cong\varprojlim_n\,F^3K_0(\widetilde X,nE)\). A crucial idea for the proof is to employ the Northcott-Rees theory of reduction of ideals in [C. Weibel, Duke Math. J. 108, No. 1, 1–35 (2001; Zbl 1092.14014)], which assures the existence of a ideal subsheaf \({\mathcal J}\) of the ideal sheaf \({\mathcal I}\) of the center of \(p\) such that \({\mathcal J}{\mathcal I}^n={\mathcal I}^{n+1}\) for sufficiently large \(n\), and the fact that one can choose \({\mathcal J}\) to be a local complete intersection ideal sheaf by the Cohen-Macaulayness of \(X\). If we denote the blow up of \(X\) along \({\mathcal J}\) by \(p': X'\to X\), then the map \(F^3K_0(X)\to F^3K_0(X')\) is known to be injective by [A. Krishna and V. Srinivas, Ann. Math. (2) 156, 155–195 (2002; Zbl 1060.14015)]. This fact together with a careful analysis of the functoriality of various maps between relative \(K\)-groups concludes the proof of the theorem.

MSC:

14C25 Algebraic cycles
14J30 \(3\)-folds
14J17 Singularities of surfaces or higher-dimensional varieties
Full Text: DOI

References:

[1] DOI: 10.1016/0022-4049(92)90015-8 · Zbl 0790.14004 · doi:10.1016/0022-4049(92)90015-8
[2] DOI: 10.1023/A:1001793226084 · Zbl 0969.14005 · doi:10.1023/A:1001793226084
[3] DOI: 10.1080/00927877508822053 · Zbl 0327.14002 · doi:10.1080/00927877508822053
[4] DOI: 10.1007/BF00538886 · Zbl 0735.19005 · doi:10.1007/BF00538886
[5] DOI: 10.1007/BF00961066 · Zbl 0806.14003 · doi:10.1007/BF00961066
[6] DOI: 10.1007/BF01393194 · Zbl 0507.14014 · doi:10.1007/BF01393194
[7] DOI: 10.1007/s002220100193 · Zbl 1027.19004 · doi:10.1007/s002220100193
[8] DOI: 10.1215/S0012-7094-84-05111-1 · Zbl 0557.14003 · doi:10.1215/S0012-7094-84-05111-1
[9] DOI: 10.2307/1970486 · Zbl 0122.38603 · doi:10.2307/1970486
[10] Contemp. Math. 55 pp 241– (1986)
[11] DOI: 10.2307/3597187 · Zbl 1060.14015 · doi:10.2307/3597187
[12] Levine M., Proc. Symp. Pure Math. 46 pp 451– (1987)
[13] DOI: 10.1007/BF01771010 · Zbl 0780.19005 · doi:10.1007/BF01771010
[14] Levine M., Contemp. Math. 126 pp 113– (1992)
[15] DOI: 10.2307/2118605 · Zbl 0839.13007 · doi:10.2307/2118605
[16] Pedrini C., Astérisque 226 pp 371– (1994)
[17] Pedrini C., Contemp. Math. 55 pp 339– (1986) · doi:10.1090/conm/055.1/862641
[18] Math. 362 pp 4– (1985)
[19] Srinivas V., Symp. Pure Math. 46 pp 475– (1987) · doi:10.1090/pspum/046.2/927994
[20] Stienstra J., Math. 355 pp 1– (1985)
[21] DOI: 10.1090/S0002-9939-96-02913-9 · Zbl 0855.19002 · doi:10.1090/S0002-9939-96-02913-9
[22] DOI: 10.1215/S0012-7094-01-10811-9 · Zbl 1092.14014 · doi:10.1215/S0012-7094-01-10811-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.