×

Serre dimension of monoid algebras. (English) Zbl 1408.13020

Summary: Let \(R\) be a commutative Noetherian ring of dimension \(d\), \(M\) a commutative cancellative torsion-free monoid of rank \(r\) and \(P\) a finitely generated projective \(R[M]\)-module of rank \(t\). Assume \(M\) is \(\Phi\)-simplicial seminormal. If \(M\in \mathcal {C}({\Phi})\), then Serre \(\dim R[M]\leq d\). If \(r\), then Serre \(\dim R[\mathrm{int}(M)]\leq d\). If \(M\subset \mathbb {Z}_{+}^{2}\) is a normal monoid of rank 2, then Serre \(\dim R[M]\leq d\). Assume \(M\) is \(c\)-divisible, \(d=1\) and \(t\). Then \(P \cong\wedge^t P\otimes R[M]^{t-1}\). Assume \(R\) is a uni-branched affine algebra over an algebraically closed field and \(d=1\). Then \(P \cong\wedge^t P\otimes R[M]^{t-1}\).

MSC:

13C10 Projective and free modules and ideals in commutative rings
13D15 Grothendieck groups, \(K\)-theory and commutative rings

References:

[1] Anderson D F, Projective modules over subrings of k[X,Y] generated by monomials, Pacific J. Math.79 (1978) 5-17 · Zbl 0372.13006 · doi:10.2140/pjm.1978.79.5
[2] Bhatwadekar S M, Inversion of monic polynomials and existence of unimodular elements (II), Math. Z.200 (1989) 233-238 · Zbl 0638.13012 · doi:10.1007/BF01230283
[3] Bhatwadekar S M, Lindel H and Rao R A, The Bass-Murthy question: Serre dimension of Laurent polynomial extensions, Invent. Math.81 (1985) 189-203 · Zbl 0604.13007 · doi:10.1007/BF01388777
[4] Bhatwadekar S M and Roy A, Some theorems about projective modules over polynomial rings, J. Algebra86 (1984) 150-158 · Zbl 0529.13005 · doi:10.1016/0021-8693(84)90061-9
[5] Bruns W and Gubeladze J, Polytopes, Rings and K-Theory, Springer Monographs in Mathematics (2009) · Zbl 1168.13001
[6] Dhorajia A M and Keshari M K, A note on cancellation of projective modules, J. Pure Appl. Algebra216 (2012) 126-129 · Zbl 1232.13007 · doi:10.1016/j.jpaa.2011.05.010
[7] Forster O, Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring, Math. Z.84 (1964) 80-87 · Zbl 0126.27303 · doi:10.1007/BF01112211
[8] Gubeladze J, Anderson’s conjecture and the maximal class of monoid over which projective modules are free, Math. USSR-Sb63 (1988) 165-188 · Zbl 0668.13011 · doi:10.1070/SM1989v063n01ABEH003266
[9] Gubeladze J, Classical algebraic K-theory of monoid algebras, Lect. Notes Math. 1437 (1990) (Springer) pp. 36-94 · Zbl 0731.19001
[10] Gubeladze J, The elementary action on unimodular rows over a monoid ring, J. Algebra148 (1992) 135-161 · Zbl 0795.20056 · doi:10.1016/0021-8693(92)90241-D
[11] Gubeladze J, K-theory of affine toric varieties, Homology Homotopy Appl.1 (1999) 135-145 · Zbl 0920.19001 · doi:10.4310/HHA.1999.v1.n1.a5
[12] Kang M C, Projective modules over some polynomial rings, J. Algebra59 (1979) 65-76 · Zbl 0419.13006 · doi:10.1016/0021-8693(79)90153-4
[13] Lindel H, Unimodular elements in projective modules, J. Algebra172 (1995) no-2, 301-319 · Zbl 0839.13006 · doi:10.1016/S0021-8693(05)80004-3
[14] Plumstead B, The conjectures of Eisenbud and Evans, Amer. J. Math105 (1983) 1417-1433 · Zbl 0532.13008 · doi:10.2307/2374448
[15] Popescu D, On a question of Quillen, Bull. Math. Soc. Sci. Math. Roumanie (N.S.)45(93) (2002) no. 3-4, 209-212 · Zbl 1089.13504
[16] Quillen D, Projective modules over polynomial rings, Invent. Math.36 (1976) 167-171 · Zbl 0337.13011 · doi:10.1007/BF01390008
[17] Roy A, Application of patching diagrams to some questions about projective modules, J. Pure Appl. Algebra24 (1982) no. 3, 313-319 · Zbl 0484.13008
[18] Sarwar H P, Some results about projective modules over monoid algebras, Comm. Algebra44 (2016) 2256-2263 · Zbl 1348.13017 · doi:10.1080/00927872.2015.1044108
[19] Schabhüser G, Cancellation properties of projective modules over monoid rings (1991) (Münster: Universität Münster, Mathematisches Institut) iv + 86 pp · Zbl 0758.13003
[20] Serre J P, Sur les modules projectifs, Sem. Dubreil-Pisot14 (1960-61) 1-16 · Zbl 0532.13008
[21] Suslin A A, Projective modules over polynomial rings are free, Sov. Math. Dokl.17 (1976) 1160-1164 · Zbl 0354.13010
[22] Swan R G, The number of generators of a module, Math. Z.102 (1967) 318-322 · Zbl 0156.27403 · doi:10.1007/BF01110912
[23] Swan R G, Gubeladze proof of Anderson’s conjecture, Contemp. Math.124 (1992) 215-250 · Zbl 0742.13005 · doi:10.1090/conm/124/1144038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.