×

Option surface statistics with applications. (English) Zbl 1505.91385

Summary: At each maturity a discrete return distribution is inferred from option prices. Option pricing models imply a comparable theoretical distribution. As both the transformed data and the option pricing model deliver points on a simplex, the data is statistically modeled by a Dirichlet distribution with expected values given by the option pricing model. The resulting setup allows for maximum likelihood estimation of option pricing model parameters with standard errors that enable the testing of hypotheses. Hypothesis testing is then illustrated by testing for the consistency of risk neutral return distributions being those of a Brownian motion with drift time changed by a subordinator. Models mixing processes of independent increments with processes related to solutions of Ornstein-Uhlenbeck (OU) equations are also tested for the presence of the OU component. Solutions to OU equations may be viewed as processes of perpetual motion responding continuously to their past movements. The tests support the rejection of Brownian subordination and the presence of a perpetual motion component.

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI

References:

[1] Bakshi, G., Cao, C. & Chen, Z. (1997) Empirical performance of alternative option pricing models, Journal of Finance52, 2003-2049.
[2] Barndorff-Nielsen, O. E. (1998) Processes of normal inverse Gaussian type, Finance and Stochastics2, 41-68. · Zbl 0894.90011
[3] Bates, D. (1991) The crash of ’87: Was it expected? Journal of Finance46, 1009-1044.
[4] Bates, D. (2000) Post-’97 crash fears in the S&P futures option market, Journal of Econometrics94, 181-238. · Zbl 0942.62118
[5] Boyarchenko, S. & Levendorskii, S. (2000) Option pricing for truncated Lévy processes, International Journal of Theoretical and Applied Finance3, 549-552. · Zbl 0973.91037
[6] Carr, P., Geman, H., Madan, D. & Yor, M. (2002) The fine structure of asset returns: An empirical investigation, Journal of Business75, 305-332.
[7] Carr, P., Geman, H., Madan, D. B. & Yor, M. (2007) Self-decomposability and option pricing, Mathematical Finance17, 31-57. · Zbl 1278.91157
[8] Carr, P. & Madan, D. (1999) Option valuation using the fast Fourier transform, Journal of Computational Finance2, 61-73.
[9] Carr, P. & Madan, D. B. (2005) A note on sufficient conditions for no arbitrage, Finance Research Letters2, 125-130.
[10] Chernov, M., Gallant, A. R., Ghysels, E. & Tauchen, G. (2003) Alternative models for stock price dynamics, Journal of Econometrics116, 225-257. · Zbl 1043.62087
[11] Davis, M. H. A. & Hobson, D. G. (2007) The range of traded option prices, Mathematical Finance17, 1-14. · Zbl 1278.91158
[12] Eberlein, E. (2001) Application of generalized hyperbolic Lé vy motions to finance. In: Lévy Processes: Theory and Applications (Barndorff-Nielsen, O. E., Mikosch, T. & Resnick, S., eds.), 319-336. Boston, MA: Birkh äuser Verlag. · Zbl 0982.60045
[13] Eberlein, E. & Keller, U. (1995) Hyperbolic distributions in finance, Bernoulli1, 281-299. · Zbl 0836.62107
[14] Eberlein, E. & Madan, D. B. (2010) The Distribution of Returns at Longer Horizons. In: Recent Advances in Financial Engineering: Proceedings of the KIER-TMU International workshop on Financial Engineering 2010 (Kijima, M., Hara, C., Muromachi, Y., Nakaoka, H. & Nishide, K., eds.), 1-18. Singapore: World Scientific.
[15] Eberlein, E. & Prause, K. (2002) The generalized hyperbolic model: Financial derivatives and risk measures. In: Mathematical Finance-Bachelier Finance Congress 2000 (Geman, H., Madan, D., Pliska, S. R. & Vorst, T., eds.), 245-267. Berlin: Springer Verlag. · Zbl 0996.91067
[16] Eraker, B., Johannes, M. S. & Polson, N. G. (2003) The impact of jumps in returns and volatility, Journal of Finance58, 1269-1300.
[17] Geman, H., Madan, D. & Yor, M. (2002) Stochastic volatility, jumps and hidden time changes, Finance and Stochastics6, 63-90. · Zbl 1006.60026
[18] Ghysels, E., Harvey, A. & Renault, E. (1996) Stochastic volatility. In: Handbook of Statistics, Vol. 14 (Maddala, G. S., ed.), 119-191. North Holland, Amsterdam: Statistical Methods in Finance. · Zbl 0887.62105
[19] Heston, S. (1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies6, 327-343. · Zbl 1384.35131
[20] Jeanblanc, M., Pitman, J. & Yor, M. (2001) Self similar processes with independent increments associated with Lévy and Bessel processes, Stochastic Processes and their Applications100, 223-232. · Zbl 1059.60052
[21] Kelejian, H. & Piras, G. (2017) Spatial Econometrics. Canbridga, MA: Academic Press.
[22] Konikov, M. & Madan, D. (2002) Stochastic volatility via Markov chains, Review of Derivatives Research5, 81-115. · Zbl 1064.91044
[23] Koponen, I. (1995) Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process, Physics Review E52, 1197-1199.
[24] Küchler, U. & Tappe, S. (2008) Bilateral gamma distributions and processes in financial mathematics, Stochastic Processes and their Applications118, 261-283. · Zbl 1133.62089
[25] Madan, D. B. (2015) Recovering statistical theory in the context of model calibrations, Journal of Financial Econometrics13, 260-292.
[26] Madan, D., Carr, P. & Chang, E. (1998) The variance gamma process and option pricing, Review of Finance2, 79-105. · Zbl 0937.91052
[27] Madan, D. B. & Schoutens, W. (2019) Arbitrage free approximations to candidate volatility surface quotations, Journal of Risk and Financial Management12, 1-21.
[28] Madan, D. B. & Schoutens, W. (2020) Self similarity in long-horizon returns, Mathematical Finance30, 1368-1391. · Zbl 1508.91583
[29] Madan, D. B., Schoutens, W. & Wang, K. (2017) Measuring and monitoring the efficiency of markets, International Journal of Theoretical and Applied Finance20, 8. · Zbl 1395.91459
[30] Madan, D. B., Schoutens, W. & Wang, K. (2022) High dimensional Markovian trading of a single stock, Frontiers of Mathematical Finance, https://doi.org/10.3934/fmf.2022001. · Zbl 1500.91130
[31] Madan, D. & Seneta, E. (1990) The variance gamma (VG) model for share market returns, Journal of Business63, 511-524.
[32] Madan, D. B. & Sharaiha, Y. M. (2020) Machine trading: Theory, advances and applications, Journal of Financial Data Science2, 8-24.
[33] Madan, D. B. & Wang, K. (2017) Asymmetries in financial returns, International Journal of Financial Engineering4, 4.
[34] Madan, D. B. & Wang, K. (2020) The structure of financial returns, Finance Research Letters40, 101665, https://doi.org/10.1016/j.frl.2020.101665.
[35] Madan, D. B. & Wang, K. (2021) Option implied VIX, skew and kurtosis term structures, International Journal of Theoretical and Applied Finance24, 1-13, https://doi.org/10.1142/S0219024921500308. · Zbl 1471.91581
[36] Madan, D. B. & Wang, K. (2022a) Quadratic variation, models, applications and lessons, Frontiers of Mathematical Finance1, 189-217, https://doi.org/10.3934/fmf.2021007. · Zbl 1498.91456
[37] Madan, D. B. & Wang, K. (2022b) Stationary increments reverting to a tempered fractional Lévy process (TFLP), Quantitative Finance7, 1391-1404. · Zbl 07562216
[38] Madan, D. B. & Yor, M. (2008) Representing the CGMY and Meixner Lévy processes as time changed Brownian motions, Journal of Computational Finance12, 27-47.
[39] Minkowski, H. (1897) Allgemeine Lehrsätze über die konvexe Polyeder, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse1897, 198-219. · JFM 28.0427.01
[40] Pan, J. (2002) The jump-risk premia in options: Evidence from an integrated time-series study, Journal of Financial Economics63, 3-50.
[41] Pitman, J. & Yor, M. (2003) Infinitely divisible laws associated with hyperbolic functions, Canadian Journal of Mathematics55, 292-330. · Zbl 1039.11054
[42] Renault, E. (1997) Econometric models of option pricing errors. In: Advances in Economics and Econometrics: Theory and Applications, Vol. 3 (Kreps, D. & Wallis, K., eds.), 223-278. Cambridge, UK: Cambridge University Press.
[43] Sato, K. (1991) Self similar processes with independent increments, Probability Theory and Related Fields89, 285-300. · Zbl 0725.60034
[44] Sato, K. (1999) Lévy Processes and Infinitely Divisible Distributions. Cambridge, UK: Cambridge University Press. · Zbl 0973.60001
[45] Schoutens, W. & Teugels, J. L. (1998) Lévy Processes, Polynomials and Martingales, Communications in Statistics: Stochastic Models14, 335-349. · Zbl 0895.60050
[46] Weyl, H. (1935) Elementare Theorie der konvexen Polyeder, Commentarii Mathematici Helvetici7, 290-306. · Zbl 0011.41104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.