×

\(\varphi\)-entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations. (English) Zbl 1411.82032

Summary: This paper is devoted to \(\varphi\)-entropies applied to Fokker-Planck and kinetic Fokker-Planck equations in the whole space, with confinement. The so-called \(\varphi\)-entropies are Lyapunov functionals which typically interpolate between Gibbs entropies and \(\text{L}^2\) estimates. We review some of their properties in the case of diffusion equations of Fokker-Planck type, give new and simplified proofs, and then adapt these methods to a kinetic Fokker-Planck equation acting on a phase space with positions and velocities. At kinetic level, since the diffusion only acts on the velocity variable, the transport operator plays an essential role in the relaxation process. Here we adopt the \(\text{H}^1\) point of view and establish a sharp decay rate. Rather than giving general but quantitatively vague estimates, our goal here is to consider simple cases, benchmark available methods and obtain sharp estimates on a key example. Some \(\varphi\)-entropies give rise to improved entropy-entropy production inequalities and, as a consequence, to faster decay rates for entropy estimates of solutions to non-degenerate diffusion equations. We prove that faster entropy decay also holds at kinetic level away from equilibrium and that optimal decay rates are achieved only in asymptotic regimes.

MSC:

82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
35K65 Degenerate parabolic equations
35H10 Hypoelliptic equations
35P15 Estimates of eigenvalues in context of PDEs
35Q83 Vlasov equations
35Q84 Fokker-Planck equations

References:

[1] Achleitner, F., Arnold, A. and Carlen, E. A., On linear hypocoercive BGK models, in From Particle Systems to Partial Differential Equations III, , Vol. 162 (Springer, 2016), pp. 1-37. · Zbl 1353.35113
[2] Achleitner, F., Arnold, A. and Stürzer, D., Large-time behavior in non-symmetric Fokker-Planck equations, Riv. Math. Univ. Parma (N.S.)6 (2015) 1-68. · Zbl 1342.35394
[3] Ané, C., Blachère, S., Chafaï, D., Fougères, P., Gentil, I., Malrieu, F., Roberto, C. and Scheffer, G., Sur les Inégalités de Sobolev Logarithmiques, , Vol. 10 (Société Mathématique de France, 2000). With a preface by Dominique Bakry and Michel Ledoux. · Zbl 0982.46026
[4] Arnold, A., Bartier, J.-P. and Dolbeault, J., Interpolation between logarithmic Sobolev and Poincaré inequalities,Commun. Math. Sci.5 (2007) 971-979. · Zbl 1146.60063
[5] Arnold, A. and Dolbeault, J., Refined convex Sobolev inequalities, J. Funct. Anal.225 (2005) 337-351. · Zbl 1087.35018
[6] A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift, preprint (2014), arXiv:1409.5425.
[7] Arnold, A., Markowich, P., Toscani, G. and Unterreiter, A., On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differential Equations26 (2001) 43-100. · Zbl 0982.35113
[8] Bakry, D., Cattiaux, P. and Guillin, A., Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré, J. Funct. Anal.254 (2008) 727-759. · Zbl 1146.60058
[9] Bakry, D. and Émery, M., Diffusions hypercontractives, in Séminaire de probabilités XIX \(1 9 8 3 / 8 4\), , Vol. 1123 (Springer, 1985), pp. 177-206. · Zbl 0561.60080
[10] Barthe, F., Cattiaux, P. and Roberto, C., Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoam.22 (2006) 993-1067. · Zbl 1118.26014
[11] Barthe, F. and Roberto, C., Sobolev inequalities for probability measures on the real line, Studia Math.159 (2003) 481-497. Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday (Polish). · Zbl 1072.60008
[12] Bartier, J.-P. and Dolbeault, J., Convex Sobolev inequalities and spectral gap, C. R. Math. Acad. Sci. Paris342 (2006) 307-312. · Zbl 1086.60013
[13] Bartier, J.-P., Dolbeault, J., Ilner, R. and Kowalczyk, M., A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients, Math. Models Methods Appl. Sci.17 (2007) 327-362. · Zbl 1117.35030
[14] Baudoin, F., Bakry-Émery meet Villani, J. Funct. Anal.273 (2017) 2275-2291. · Zbl 1373.35061
[15] Beckner, W., A generalized Poincaré inequality for Gaussian measures, Proc. Amer. Math. Soc.105 (1989) 397-400. · Zbl 0677.42020
[16] Blanchet, A., Dolbeault, J. and Kowalczyk, M., Stochastic Stokes’ drift, homogenized functional inequalities, and large time behavior of brownian ratchets, SIAM J. Math. Anal.41 (2009) 46-76. · Zbl 1196.26023
[17] Bodineau, T., Lebowitz, J., Mouhot, C. and Villani, C., Lyapunov functionals for boundary-driven nonlinear drift-diffusion equations, Nonlinearity27 (2014) 2111-2132. · Zbl 1301.58017
[18] Bolley, F. and Gentil, I., Phi-entropy inequalities for diffusion semigroups, J. Math. Pures Appl. \((9)93 (2010) 449-473\). · Zbl 1193.47046
[19] Bouchut, F., Existence de solutions régulières globales pour le système de Vlasov-Poisson-Fokker-Planck en dimension trois, C. R. Acad. Sci. Paris Sér. I Math.313 (1991) 243-248. · Zbl 0743.35083
[20] Bouchut, F., Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal.111 (1993) 239-258. · Zbl 0777.35059
[21] E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot and C. Schmeiser, Hypocoercivity without confinement, preprint (2017), arXiv:1708.06180. · Zbl 1448.82035
[22] Cáceres, M. J., Carrillo, J. A. and Dolbeault, J., Nonlinear stability in \(L^p\) for a confined system of charged particles, SIAM J. Math. Anal.34 (2002) 478-494. · Zbl 1015.35015
[23] Carrillo, J. A., Dolbeault, J., Markowich, P. A. and Sparber, C., On the long-time behavior of the quantum Fokker-Planck equation, Monatsh. Math.141 (2004) 237-257. · Zbl 1061.35095
[24] Chafaï, D., Entropies, convexity, and functional inequalities: On \(\Phi \)-entropies and \(\Phi \)-Sobolev inequalities, J. Math. Kyoto Univ.44 (2004) 325-363. · Zbl 1079.26009
[25] Csiszár, I., Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar.2 (1967) 299-318. · Zbl 0157.25802
[26] Csiszar, I. and Körner, J., Information Theory: Coding Theorems for Discrete Memoryless Systems (Cambridge Univ. Press, 2011). · Zbl 1256.94002
[27] Dolbeault, J., Esteban, M. J., Kowalczyk, M. and Loss, M., Improved interpolation inequalities on the sphere, Discrete Contin. Dyn. Syst. Ser. S7 (2014) 695-724. · Zbl 1290.26022
[28] Dolbeault, J. and Kowalczyk, M., Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates, Ann. Fac. Sci. Toulouse \((6)26 (2017) 949-977\). · Zbl 1397.35109
[29] Dolbeault, J., Mouhot, C. and Schmeiser, C., Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math.347 (2009) 511-516. · Zbl 1177.35054
[30] Dolbeault, J., Mouhot, C. and Schmeiser, C., Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc.367 (2015) 3807-3828. · Zbl 1342.82115
[31] Dolbeault, J., Nazaret, B. and Savaré, G., A new class of transport distances between measures, Calc. Var. Partial Differential Equations34(2) (2009) 193-231, https://doi.org/10.1007/s00526-008-0182-5. · Zbl 1157.49042
[32] Dolbeault, J., Nazaret, B. and Savaré, G., On the Bakry-Emery criterion for linear diffusions and weighted porous media equations, Commun. Math. Sci.6 (2008) 477-494. · Zbl 1149.35330
[33] Dolbeault, J., Nazaret, B. and Savaré, G., From Poincaré to logarithmic Sobolev inequalities: A gradient flow approach, SIAM J. Math. Anal.44 (2012) 3186-3216. · Zbl 1264.26011
[34] Dolbeault, J. and Toscani, G., Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays, Nonlinear Anal. Theory Methods Appl.138 (2016) 31-43. · Zbl 1334.35098
[35] Dolbeault, J. and Toscani, G., Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities, Int. Math. Res. Not.2016 (2016) 473-498. · Zbl 1355.46038
[36] Eckmann, J.-P. and Hairer, M., Spectral properties of hypoelliptic operators, Comm. Math. Phys.235 (2003) 233-253. · Zbl 1040.35016
[37] J. Evans, Hypocoercivity in Phi-entropy for the Linear Boltzmann Equation on the Torus, preprint (2017), arXiv:1702.04168.
[38] Federbush, P., Partially alternate derivation of a result of Nelson, J. Math. Phys.10 (1969) 50-52. · Zbl 0165.58301
[39] Gianazza, U., Savaré, G. and Toscani, G., The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal.194 (2009) 133-220. · Zbl 1223.35264
[40] Grisvard, P., Elliptic problems in nonsmooth domains, , Vol. 24, Pitman (Advanced Publishing Program, Boston, MA, 1985). · Zbl 0695.35060
[41] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math.97 (1975) 1061-1083. · Zbl 0318.46049
[42] Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities, (Cambridge Univ. Press, 1988). Reprint of the 1952 edition. · Zbl 0634.26008
[43] Helffer, B. and Nier, F., Hypoelliptic estimates and spectral theory for Fokker-Planck operators and Witten Laplacians, , Vol. 1862 (Springer-Verlag, 2005). · Zbl 1072.35006
[44] Hérau, F., Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal.46 (2006) 349-359. · Zbl 1096.35019
[45] Hérau, F., Short and long time behavior of the Fokker-Planck equation in a confining potential and applications, J. Funct. Anal.244 (2007) 95-118. · Zbl 1120.35016
[46] Hérau, F. and Nier, F., Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential, Arch. Ration. Mech. Anal.171 (2004) 151-218. · Zbl 1139.82323
[47] Holley, R. and Stroock, D., Logarithmic Sobolev inequalities and stochastic Ising models, J. Statist. Phys.46 (1987) 1159-1194. · Zbl 0682.60109
[48] Hörmander, L., Hypoelliptic second order differential equations, Acta Math.119 (1967) 147-171. · Zbl 0156.10701
[49] Iacobucci, A., Olla, S. and Stoltz, G., Convergence rates for nonequilibrium Langevin dynamics, Ann. Math. Québec (2017), pp. 1-26. https://doi.org/10.1007/s40316-017-0091-0. · Zbl 1419.82044
[50] Il’in, A. and Khas’ minskii, R., On equations of Brownian motion, Theory Probab. Appl.9 (1964) 421-444. · Zbl 0134.34303
[51] Kemperman, J. H., On the optimum rate of transmitting information, in Probability and Information Theory (Springer, 1969), pp. 126-169. · Zbl 0287.94021
[52] Kolmogoroff, A., Zufällige Bewegungen (zur Theorie der Brownschen Bewegung), Ann. Math. \((2)35 (1934) 116-117\). · Zbl 0008.39906
[53] Kullback, S., On the convergence of discrimination information, IEEE Trans. Inform. Theory14 (1968) 765-766.
[54] Latała, R. and Oleszkiewicz, K., Between Sobolev and Poincaré, in Geometric Aspects of Functional Analysis, , Vol. 1745 (Springer, 2000), pp. 147-168. · Zbl 0986.60017
[55] Lee, P. W. Y., Sharp Harnack inequalities for a family of hypoelliptic diffusions, J. Math. Phys.58 (2017) 031501. · Zbl 1362.82042
[56] Monmarché, P., On \(\mathcal{H}^1\) and entropic convergence for contractive PDMP, Electron. J. Probab.20 (2015) 1-30. · Zbl 1332.60123
[57] P. Monmarché, A note on Fisher Information hypocoercive decay for the linear Boltzmann equation preprint (2017), arXiv:1703.10504. · Zbl 1470.35251
[58] Monmarché, P., Generalized \(\Gamma\) calculus and application to interacting particles on a graph, Potential Anal. (2018) 1-28, https://doi.org/10.1007/s11118-018-9689-3.
[59] Mouhot, C. and Neumann, L., Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus, Nonlinearity19 (2006) 969-998. · Zbl 1169.82306
[60] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math., 44 (1972), pp. 31-38. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, I. · Zbl 0236.26015
[61] Nash, J., Continuity of solutions of parabolic and elliptic equations, Amer. J. Math.80 (1958) 931-954. · Zbl 0096.06902
[62] Pavliotis, G. A., Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations, Vol. 60 (Springer, 2014). · Zbl 1318.60003
[63] Pinsker, M. S., Information and Information Stability of Random Variables and Processes (Holden-Day Inc., 1964). Translated and edited by Amiel Feinstein. · Zbl 0125.09202
[64] Risken, H., The Fokker-Planck equation: Methods of Solution and Applications, , Vol. 18 (Springer-Verlag, 1984). · Zbl 0546.60084
[65] Stam, A. J., Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. Control2 (1959) 101-112. · Zbl 0085.34701
[66] Toscani, G., Rényi entropies and nonlinear diffusion equations, Acta Appl. Math.132 (2014) 595-604. · Zbl 1308.94044
[67] Unterreiter, A., Arnold, A., Markowich, P. and Toscani, G., On generalized Csiszár-Kullback inequalities, Monatsh. Math.131 (2000) 235-253. · Zbl 1015.94003
[68] Victory, H. D. Jr. and O’Dwyer, B. P., On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J.39 (1990) 105-156. · Zbl 0674.60097
[69] Villani, C., Hypocoercive diffusion operators, in Int. Congr. Math., Vol. III (European Mathematical Society, 2006), pp. 473-498. · Zbl 1130.35027
[70] Villani, C., Entropy production and convergence to equilibrium, in Entropy Methods for the Boltzmann Equation, (Springer, Berlin, Heidelberg, 2008), pp. 1-70. · Zbl 1128.76056
[71] Villani, C., Hypocoercivity, Mem. Amer. Math. Soc.202 (2009) iv+141. · Zbl 1197.35004
[72] Weissler, F. B., Logarithmic Sobolev inequalities for the heat-diffusion semigroup, Trans. Amer. Math. Soc.237 (1978) 255-269. · Zbl 0376.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.