×

A note on Fisher information hypocoercive decay for the linear Boltzmann equation. (English) Zbl 1470.35251

The paper deals with the long-time convergence to equilibrium of the solution of a linear Boltzmann equation for a system of particles influenced by a potential close to be quadratic. The collision operator appearing at the right-hand side of the equation describes random collisions with other particles with Gaussian velocities. Two cases are taken into account: in the first one all the components of the velocity are refreshed, in the second one only one component per time. Smooth initial data are considered, and it is shown that the Fisher Information (which bounds from above the relative entropy) with respect to the stationary state converges exponentially fast to zero.

MSC:

35Q20 Boltzmann equations
35K99 Parabolic equations and parabolic systems
60J25 Continuous-time Markov processes on general state spaces

References:

[1] Achleitner, F.; Arnold, A.; Carlen, EA; Gonçalves, P.; Soares, AJ, On linear hypocoercive BGK models, From Particle Systems to Partial Differential Equations III, 1-37 (2016), Cham: Springer, Cham · Zbl 1353.35113
[2] Achleitner, F.; Arnold, A.; Stürzer, D., Large-time behavior in non-symmetric Fokker-Planck equations, Riv. Math. Univ. Parma (N.S.), 6, 1, 1-68 (2015) · Zbl 1342.35394
[3] Arnold, A., Erb, J.: Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift (2014). arXiv:1409.5425
[4] Bakry, D., Gentil, I., Ledoux, M.: Analysis and geometry of Markov diffusion operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 348. Springer, Cham (2014). doi:10.1007/978-3-319-00227-9 · Zbl 1376.60002
[5] Baudoin, F., Bakry-Émery meet Villani, J. Funct. Anal., 273, 7, 2275-2291 (2017) · Zbl 1373.35061 · doi:10.1016/j.jfa.2017.06.021
[6] Bou-Rabee, N.; Sanz-Serna, J., Randomized Hamiltonian Monte Carlo, Ann. Appl. Probab., 27, 4, 2159-2194 (2017) · Zbl 1373.60129 · doi:10.1214/16-AAP1255
[7] Cáceres, MJ; Carrillo, JA; Goudon, T., Equilibration rate for the linear inhomogeneous relaxation-time Boltzmann equation for charged particles, Commun. Partial Differ. Equ., 28, 5-6, 969-989 (2003) · Zbl 1045.35094 · doi:10.1081/PDE-120021182
[8] Dolbeault, J.; Mouhot, C.; Schmeiser, C., Hypocoercivity for linear kinetic equations conserving mass, Trans. Am. Math. Soc., 367, 6, 3807-3828 (2015) · Zbl 1342.82115 · doi:10.1090/S0002-9947-2015-06012-7
[9] Evans, J.: Hypocoercivity in Phi-entropy for the Linear Boltzmann equation on the torus (2017). ArXiv e-prints
[10] Guillin, A., Monmarché, P.: Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes (2020). arXiv e-prints arXiv:2003.00735
[11] Hairer, M.; Mattingly, J., Slow energy dissipation in anharmonic oscillator chains, Commun. Pure Appl. Math., 62, 8, 999-1032 (2009) · Zbl 1169.82012 · doi:10.1002/cpa.20280
[12] Han-Kwan, D., Léautaud, M.: Geometric analysis of the linear Boltzmann equation I. Trend to equilibrium. Ann. PDE 1(1), Art. 3, 84 (2015) · Zbl 1398.35142
[13] Hérau, F., Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation, Asymptot. Anal., 46, 3-4, 349-359 (2006) · Zbl 1096.35019
[14] Iacobucci, A.; Olla, S.; Stoltz, G., Convergence rates for nonequilibrium Langevin dynamics, Ann. Math. Québec, 43, 73-98 (2019) · Zbl 1419.82044 · doi:10.1007/s40316-017-0091-0
[15] Letizia, V.; Olla, S., Nonequilibrium isothermal transformations in a temperature gradient from a microscopic dynamics, Ann. Probab., 45, 6, 3987-4018 (2017) · Zbl 1412.60133 · doi:10.1214/16-AOP1156
[16] Monmarché, P., Long-time behaviour and propagation of chaos for mean field kinetic particles, Stochastic Process. Their Appl., 127, 1721-1737 (2016) · Zbl 1367.60121 · doi:10.1016/j.spa.2016.10.003
[17] Monmarché, P., Generalized \(\Gamma\) calculus and application to interacting particles on a graph, Potential Anal., 50, 3, 439-466 (2019) · Zbl 1411.58013 · doi:10.1007/s11118-018-9689-3
[18] Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202(950), iv+141 (2009). doi:10.1090/S0065-9266-09-00567-5 · Zbl 1197.35004
[19] Wang, FY, Hypercontractivity and applications for stochastic hamiltonian systems, J. Funct. Anal., 272, 12, 5360-5383 (2017) · Zbl 1407.60092 · doi:10.1016/j.jfa.2017.03.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.