×

Variational methods in geometry. (English) Zbl 1371.49038

Author’s abstract: Variational principles are ubiquitous in nature. Many geometric objects such as geodesics or minimal surfaces allow variational characterizations. We recall some basic ideas in the calculus of variations, also relevant for some of the most advanced research in the field today, and show how a subtle variation of standard methods can lead to surprising improvements, with numerous applications.

MSC:

49Q05 Minimal surfaces and optimization
49-02 Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control
53-02 Research exposition (monographs, survey articles) pertaining to differential geometry
58-02 Research exposition (monographs, survey articles) pertaining to global analysis
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable)
58E12 Variational problems concerning minimal surfaces (problems in two independent variables)
58E20 Harmonic maps, etc.
53C22 Geodesics in global differential geometry
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
Full Text: DOI

References:

[1] Agol, I., Marques, F.C., Neves, A.: Min-max theory and the energy of links. J. Am. Math. Soc. 29(2), 561-578 (2016) · Zbl 1335.57009 · doi:10.1090/jams/835
[2] Ballmann, W., Der Satz von Lusternik und Schnirelmann, No. 102, 1-25 (1978), Bonn · Zbl 0394.53027
[3] Ballmann, W., Ziller, W.: On the number of closed geodesics on a compact Riemannian manifold. Duke Math. J. 49(3), 629-632 (1982) · Zbl 0495.53042 · doi:10.1215/S0012-7094-82-04932-8
[4] Bangert, V.: Geodätische Linien auf Riemannschen Mannigfaltigkeiten. Jahresber. Dtsch. Math.-Ver. 87(2), 39-66 (1985) · Zbl 0565.53028
[5] Bangert, V.: On the existence of closed geodesics on two-spheres. Int. J. Math. 4(1), 1-10 (1993) · Zbl 0791.53048 · doi:10.1142/S0129167X93000029
[6] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, vol. 13. Birkhäuser, Boston (1994) · Zbl 0802.35142 · doi:10.1007/978-1-4612-0287-5
[7] Birkhoff, G.D.: Dynamical systems with two degrees of freedom. Trans. Am. Math. Soc. 18(2), 199-300 (1917) · JFM 46.1174.01 · doi:10.1090/S0002-9947-1917-1501070-3
[8] Böhme, R., Tromba, A.J.: The index theorem for classical minimal surfaces. Ann. Math. (2) 113(3), 447-499 (1981) · Zbl 0482.58010 · doi:10.2307/2006993
[9] Borer, F., Galimberti, L., Struwe, M.: “Large” conformal metrics of prescribed Gauss curvature on surfaces of higher genus. Comment. Math. Helv. 90(2), 407-428 (2015) · Zbl 1336.53048 · doi:10.4171/CMH/358
[10] Brezis, H., Coron, J.-M.: Multiple solutions of H-systems and Rellich’s conjecture. Commun. Pure Appl. Math. 37(2), 149-187 (1984) · Zbl 0537.49022 · doi:10.1002/cpa.3160370202
[11] Buttazzo, G., Giaquinta, M., Hildebrandt, S.: One-Dimensional Variational Problems. Oxford Lecture Series in Mathematics and its Applications, vol. 15. Clarendon/Oxford Univ. Press, New York (1998) · Zbl 0915.49001
[12] Carlotto, A., Malchiodi, A.: Weighted barycentric sets and singular Liouville equations on compact surfaces. J. Funct. Anal. 262(2), 409-450 (2012) · Zbl 1232.53035 · doi:10.1016/j.jfa.2011.09.012
[13] Colin de Verdière, Y.: Spectrum of the Laplace operator and periodic geodesics: thirty years after. Ann. Inst. Fourier 57(7), 2429-2463 (2007) · Zbl 1142.35057 · doi:10.5802/aif.2339
[14] Coron, J.-M.: Topologie et cas limite des injections de Sobolev. C. R. Math. Acad. Sci. Paris, Sér. I 299(7), 209-212 (1984) · Zbl 0569.35032
[15] Courant, R.: Dirichlet’s Principle, Conformal Mappings, and Minimal Surfaces. Interscience, New York (1950) · Zbl 0040.34603
[16] del Pino, M., Felmer, P.L.: On the basic concentration estimate for the Ginzburg-Landau equation. Differ. Integral Equ. 11(5), 771-779 (1998) · Zbl 1007.35088
[17] del Pino, M., Román, C.: Large conformal metrics with prescribed sign-changing Gauss curvature. Calc. Var. Partial Differ. Equ. 54(1), 763-789 (2015) · Zbl 1329.53057 · doi:10.1007/s00526-014-0805-y
[18] Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces. Part I: Boundary Value Problems. Grundlehren der mathematischen Wissenschaften, vol. 295. Springer, Berlin (1992) · Zbl 0777.53012
[19] Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces. Part II: Boundary Regularity. Grundlehren der mathematischen Wissenschaften, vol. 296. Springer, Berlin (1992) · Zbl 0777.53013
[20] Ding, W.Y., Liu, J.Q.: A note on the problem of prescribing Gaussian curvature on surfaces. Trans. Am. Math. Soc. 347(3), 1059-1066 (1995) · Zbl 0827.58050 · doi:10.1090/S0002-9947-1995-1257102-2
[21] Djadli, Z., Malchiodi, A.: Existence of conformal metrics with constant Q-curvature. Ann. Math. (2) 168(3), 813-858 (2008) · Zbl 1186.53050 · doi:10.4007/annals.2008.168.813
[22] Douglas, J.: Solution of the problem of Plateau. Trans. Am. Math. Soc. 33(1), 263-321 (1931) · Zbl 0001.14102 · doi:10.1090/S0002-9947-1931-1501590-9
[23] Douglas, J.: Minimal surfaces of higher topological structure. Ann. Math. (2) 40(1), 205-298 (1939) · JFM 65.0454.01 · doi:10.2307/1968552
[24] Galimberti, L.: Compactness issues and bubbling phenomena for the prescribed Gaussian curvature equation on the torus. Calc. Var. Partial Differ. Equ. 54(3), 2483-2501 (2015) · Zbl 1334.53027 · doi:10.1007/s00526-015-0872-8
[25] Goldstine, H.H.: A History of the Calculus of Variations from the 17th Through the 19th Century. Studies in the History of Mathematics and Physical Sciences, vol. 5. Springer, New York (1980) · Zbl 0452.49002
[26] Hildebrandt, S.: Boundary behavior of minimal surfaces. Arch. Ration. Mech. Anal. 35, 47-82 (1969) · Zbl 0183.39402 · doi:10.1007/BF00248494
[27] Hildebrandt, S., Calculus of variations today, reflected in the Oberwolfach meetings, 321-336 (1984), Basel
[28] Hildebrandt, S., Tromba, A.: The Parsimonious Universe. Shape and Form in the Natural World. Copernicus, New York (1996) · Zbl 0860.01002 · doi:10.1007/978-1-4612-2424-2
[29] Hildebrandt, S., von der Mosel, H.: On two-dimensional parametric variational problems. Calc. Var. Partial Differ. Equ. 9(3), 249-267 (1999) · Zbl 0934.49022 · doi:10.1007/s005260050140
[30] Huber, H.: Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen. Math. Ann. 138, 1-26 (1959) · Zbl 0089.06101 · doi:10.1007/BF01369663
[31] Imbusch, C.; Struwe, M., Variational principles for minimal surfaces, No. 35, 477-498 (1999), Basel · Zbl 0921.35046 · doi:10.1007/978-3-0348-8765-6_19
[32] Jost, J., Struwe, M.: Morse-Conley theory for minimal surfaces of varying topological type. Invent. Math. 102(3), 465-499 (1990) · Zbl 0731.58018 · doi:10.1007/BF01233437
[33] Kazdan, J.L., Warner, F.W.: Curvature functions for compact 2-manifolds. Ann. Math. (2) 99, 14-47 (1974) · Zbl 0273.53034 · doi:10.2307/1971012
[34] Klingenberg, W.: Lectures on Closed Geodesics. Grundlehren der mathematischen Wissenschaften, vol. 230. Springer, Berlin (1978) · Zbl 0397.58018
[35] Lamm, T.: Energy identity for approximations of harmonic maps from surfaces. Trans. Am. Math. Soc. 362(8), 4077-4097 (2010) · Zbl 1200.58016 · doi:10.1090/S0002-9947-10-04912-3
[36] Lusternik, L., Schnirelman, L.: Sur le problème de trois géodésiques fermées sur les surfaces de genre 0. C. R. Math. Acad. Sci. Paris 189, 269-271 (1929) · JFM 55.0316.02
[37] Lyusternik, L., Schnirelman, L.: Topological methods in variational problems and their application to the differential geometry of surfaces. Usp. Mat. Nauk 2(1), 166-217 (1947) (in Russian) · Zbl 1446.53052
[38] Marques, F.C., Neves, A.: Rigidity of min-max minimal spheres in three-manifolds. Duke Math. J. 161(14), 2725-2752 (2012) · Zbl 1260.53079 · doi:10.1215/00127094-1813410
[39] Marques, F.C., Neves, A.: Min-max theory and the Willmore conjecture. Ann. Math. (2) 179(2), 683-782 (2014) · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[40] Michelat, A., Rivière, T.: A viscosity method for the min-max construction of closed geodesics. arXiv:1511.04545 · Zbl 1353.49006
[41] Morse, M.: The Calculus of Variations in the Large. American Mathematical Society Colloquium Publications, vol. 18. Am. Math. Soc., New York (1934). Reprint: Am. Math. Soc. Providence, 1996 · JFM 60.0450.01
[42] Morse, M., Tompkins, C.: The existence of minimal surfaces of general critical types. Ann. Math. (2) 40(2), 443-472 (1939) · JFM 65.0456.04 · doi:10.2307/1968932
[43] Nitsche, J.C.C.: The boundary behavior of minimal surfaces. Kellogg’s theorem and branch points on the boundary. Invent. Math. 8, 313-333 (1969) · Zbl 0195.23101 · doi:10.1007/BF01404636
[44] Nitsche, J.C.C.: Vorlesungen über Minimalflächen. Grundlehren der mathematischen Wissenschaften, vol. 199. Springer, Berlin (1975) · Zbl 0319.53003 · doi:10.1007/978-3-642-65619-4
[45] Palais, R.S.: Morse theory on Hilbert manifolds. Topology 2, 299-340 (1963) · Zbl 0122.10702 · doi:10.1016/0040-9383(63)90013-2
[46] Palais, R.S., Smale, S.: A generalized Morse theory. Bull. Am. Math. Soc. 70, 165-172 (1964) · Zbl 0119.09201 · doi:10.1090/S0002-9904-1964-11062-4
[47] Radó, T.: On Plateau’s problem. Ann. Math. (2) 31(3), 457-469 (1930) · JFM 56.0437.02 · doi:10.2307/1968237
[48] Rivière, T.: A viscosity method for the min-max theory of minimal surfaces. arXiv:1508.07141 · Zbl 1387.53084
[49] Rupflin, M.: Teichmüller harmonic map flow from cylinders. Math. Ann. (2016). doi:10.1007/s00208-016-1456-4. arXiv:1501.07552 · Zbl 1451.53017 · doi:10.1007/s00208-016-1456-4
[50] Rupflin, M., Topping, P.M.: Flowing maps to minimal surfaces. Am. J. Math. 138(4), 1095-1115 (2016) · Zbl 1357.53018 · doi:10.1353/ajm.2016.0035
[51] Sacks, J., Uhlenbeck, K.: The existence of minimal immersions of 2-spheres. Ann. Math. (2) 113(1), 1-24 (1981) · Zbl 0462.58014 · doi:10.2307/1971131
[52] Struwe, M.: On a critical point theory for minimal surfaces spanning a wire in \(Rn\mathbb{R}^n\). J. Reine Angew. Math. 349, 1-23 (1984) · Zbl 0521.49028
[53] Struwe, M.: Nonuniqueness in the Plateau problem for surfaces of constant mean curvature. Arch. Ration. Mech. Anal. 93(2), 135-157 (1986) · Zbl 0603.49027 · doi:10.1007/BF00279957
[54] Struwe, M.: Plateau’s Problem and the Calculus of Variations. Mathematical Notes, vol. 35. Princeton Univ. Press, Princeton (1988) · Zbl 0694.49028
[55] Struwe, M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160(1-2), 19-64 (1988) · Zbl 0646.53005 · doi:10.1007/BF02392272
[56] Struwe, M.: Existence of periodic solutions of Hamiltonian systems on almost every energy surface. Bol. Soc. Bras. Mat. (N. S.) 20(2), 49-58 (1990) · Zbl 0719.58032 · doi:10.1007/BF02585433
[57] Struwe, M., Multiple solutions to the Dirichlet problem for the equation of prescribed mean curvature, 639-666 (1990), Boston · Zbl 0703.53049 · doi:10.1016/B978-0-12-574249-8.50035-3
[58] Struwe, M.: Une estimation asymptotique pour le modèle de Ginzburg-Landau. C. R. Math. Acad. Sci. Paris, Sér. I 317(7), 677-680 (1993) · Zbl 0789.49005
[59] Struwe, M.: On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions. Differ. Integral Equ. 7(5-6), 1613-1624 (1994). Erratum: Differ. Integral Equ. 8(1), 224 (1995) · Zbl 0809.35031
[60] Struwe, M.: Positive solutions of critical semilinear elliptic equations on non-contractible planar domains. J. Eur. Math. Soc. 2(4), 329-388 (2000) · Zbl 0982.35041 · doi:10.1007/s100970000023
[61] Struwe, M.: Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, 4th edn. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34. Springer, Berlin (2008) · Zbl 1284.49004
[62] Tromba, A.J.: Degree theory on oriented infinite-dimensional varieties and the Morse number of minimal surfaces spanning a curve \(Rn\mathbb{R}^n\). Part II: \(n=3n=3\). Manuscr. Math. 48(1-3), 139-161 (1984) · Zbl 0622.58006 · doi:10.1007/BF01169005
[63] Tromba, A.J.: Degree theory on oriented infinite-dimensional varieties and the Morse number of minimal surfaces spanning a curve in \(Rn\mathbb{R}^n\). Part I: n≥\(4n\ge 4\). Trans. Am. Math. Soc. 290(1), 385-413 (1985) · Zbl 0604.58008
[64] Wente, H.C.: Large solutions to the volume constrained Plateau problem. Arch. Ration. Mech. Anal. 75(1), 59-77 (1980) · Zbl 0473.49029 · doi:10.1007/BF00284621
[65] Zhou, X.: Min-max hypersurface in manifold of positive Ricci curvature. arXiv:1504.00966 · Zbl 1367.53054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.