×

Three classes of fractional oscillators. (English) Zbl 1412.34036

Summary: This article addresses three classes of fractional oscillators named Class I, II and III. It is known that the solutions to fractional oscillators of Class I type are represented by the Mittag-Leffler functions. However, closed form solutions to fractional oscillators in Classes II and III are unknown. In this article, we present a theory of equivalent systems with respect to three classes of fractional oscillators. In methodology, we first transform fractional oscillators with constant coefficients to be linear 2-order oscillators with variable coefficients (variable mass and damping). Then, we derive the closed form solutions to three classes of fractional oscillators using elementary functions. The present theory of equivalent oscillators consists of the main highlights as follows. (1) Proposing three equivalent 2-order oscillation equations corresponding to three classes of fractional oscillators; (2) Presenting the closed form expressions of equivalent mass, equivalent damping, equivalent natural frequencies, equivalent damping ratio for each class of fractional oscillators; (3) Putting forward the closed form formulas of responses (free, impulse, unit step, frequency, sinusoidal) to each class of fractional oscillators; (4) Revealing the power laws of equivalent mass and equivalent damping for each class of fractional oscillators in terms of oscillation frequency; (5) Giving analytic expressions of the logarithmic decrements of three classes of fractional oscillators; (6) Representing the closed form representations of some of the generalized Mittag-Leffler functions with elementary functions. The present results suggest a novel theory of fractional oscillators. This may facilitate the application of the theory of fractional oscillators to practice.

MSC:

34A08 Fractional ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations

References:

[1] Timoshenko, S.P.; ; Vibration Problems in Engineering: New York, NY, USA 1955; . · Zbl 0201.27501
[2] Timoshenko, S.P.; ; Mechanical Vibrations: New York, NY, USA 1955; .
[3] Den Hartog, J.P.; ; Mechanical Vibrations: New York, NY, USA 1956; . · Zbl 0071.39304
[4] Harris, C.M.; ; Shock and Vibration Handbook: New York, NY, USA 2002; .
[5] Palley, O.M.; Bahizov, Г.B.; Voroneysk, E.Я.; ; Handbook of Ship Structural Mechanics: Beijing, China 2002; .
[6] Rayleigh, J.W.S.B.; ; The Theory of Sound: London, UK 1877; Volume Volume 1 . · JFM 15.0848.02
[7] Lalanne, C.; ; Mechanical Vibration and Shock: New York, NY, USA 2013; Volume Volumes 1-5 .
[8] Nilsson, J.W.; Riedel, S.A.; ; Electronic Circuits: Upper Saddle River, NJ, USA 2011; .
[9] Diaz, H.F.; Markgraf, V.; ; El Niño and the Southern Oscillation Multiscale Variability and Global and Regional Impacts: Cambridge, UK 2000; .
[10] Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M.; ; The North Atlantic Oscillation: Climatic Significance and Environmental Impact: New York, NY, USA 2003; Volume Volume 134 .
[11] Xu, L.; Chen, Z.; Hu, K.; Stanley, H.E.; Ivanov, P.C.; Spurious detection of phase synchronization in coupled nonlinear oscillators; Phys. Rev. E: 2006; Volume 73 ,065201.
[12] Fourier, J.; ; Thkorie Analytique de la Chaleur: Paris, France 1822; . · JFM 15.0954.01
[13] Bernoulli, D.; ; Hydrodynamica, Sive de Viribus et Motibus Fluidorum Commentarii. Opus Academicum ab Auctore, dum Petropoli Ageret, Congestum: ETH-Bibliothek Zürich, Zürich, Switzerland 1738; .
[14] Timoshenko, S.P.; On the transverse vibrations of bars of uniform cross-section; Philos. Mag.: 1922; Volume 43 ,125-131.
[15] Searle, J.H.C.; The Effect of rotatory inertia on the vibration of bars; Philos. Mag.: 1907; Volume 14 ,35-60. · JFM 38.0817.01
[16] Steinmetz, C.P.; ; Theory and Calculation of Alternating Current Phenomena: New York, NY, USA 1897; . · JFM 28.0805.03
[17] Steinmetz, C.P.; ; Engineering Mathematics: A Series of Lectures Delivered at Union College: New York, NY, USA 1917; . · JFM 42.1039.08
[18] Li, M.; Lim, S.C.; Cattani, C.; Scalia, M.; Characteristic roots of a class of fractional oscillators; Adv. High Energy Phys.: 2013; Volume 2013 ,853925. · Zbl 1328.34007
[19] Li, M.; Lim, S.C.; Chen, S.Y.; Exact solution of impulse response to a class of fractional oscillators and its stability; Math. Probl. Eng.: 2011; Volume 2011 ,657839. · Zbl 1202.34018
[20] Lim, S.C.; Li, M.; Teo, L.P.; Langevin equation with two fractional orders; Phys. Lett. A: 2008; Volume 372 ,6309-6320. · Zbl 1225.82049
[21] Lim, S.C.; Li, M.; Teo, L.P.; Locally self-similar fractional oscillator processes; Fluct. Noise Lett.: 2007; Volume 7 ,L169-L179.
[22] Lim, S.C.; Teo, L.P.; The fractional oscillator process with two indices; J. Phys. A Stat. Mech. Appl.: 2009; Volume 42 ,065208. · Zbl 1156.82010
[23] West, B.J.; Geneston, E.L.; Grigolini, P.; Maximizing information exchange between complex networks; Phys. Rep.: 2008; Volume 468 ,1-99. · Zbl 1211.94005
[24] Duan, J.-S.; The periodic solution of fractional oscillation equation with periodic input; Adv. Math. Phys.: 2013; Volume 2013 ,869484. · Zbl 1291.34008
[25] Mainardi, F.; Fractional relaxation-oscillation and fractional diffusion-wave phenomena; Chaos Solitons Fractals: 1996; Volume 7 ,1461-1477. · Zbl 1080.26505
[26] Zurigat, M.; Solving fractional oscillators using Laplace homotopy analysis method; Ann. Univ. Craiova Math. Comput. Sci. Ser.: 2011; Volume 38 ,1-11. · Zbl 1265.34039
[27] Blaszczyk, T.; Ciesielski, M.; Fractional oscillator equation—Transformation into integral equation and numerical solution; Appl. Math. Comput.: 2015; Volume 257 ,428-435. · Zbl 1338.34012
[28] Blaszczyk, T.; Ciesielski, M.; Klimek, M.; Leszczynski, J.; Numerical solution of fractional oscillator equation; Appl. Math. Comput.: 2011; Volume 218 ,2480-2488. · Zbl 1243.65090
[29] Al-rabtah, A.; Ertürk, V.S.; Momani, S.; Solutions of a fractional oscillator by using differential transform method; Comput. Math. Appl.: 2010; Volume 59 ,1356-1362. · Zbl 1189.34068
[30] Drozdov, A.D.; Fractional oscillator driven by a Gaussian noise; Phys. A Stat. Mech. Appl.: 2007; Volume 376 ,237-245.
[31] Stanislavsky, A.A.; Fractional oscillator; Phys. Rev. E: 2004; Volume 70 ,051103. · Zbl 1178.26008
[32] Achar, B.N.N.; Hanneken, J.W.; Clarke, T.; Damping characteristics of a fractional oscillator; Phys. A Stat. Mech. Appl.: 2004; Volume 339 ,311-319.
[33] Achar, B.N.N.; Hanneken, J.W.; Clarke, T.; Response characteristics of a fractional oscillator; Phys. A Stat. Mech. Appl.: 2002; Volume 309 ,275-288. · Zbl 0995.70017
[34] Achar, B.N.N.; Hanneken, J.W.; Enck, T.; Clarke, T.; Dynamics of the fractional oscillator; Phys. A Stat. Mech. Appl.: 2001; Volume 297 ,361-367. · Zbl 0969.70511
[35] Tofighi, A.; The intrinsic damping of the fractional oscillator; Phys. A Stat. Mech. Appl.: 2003; Volume 329 ,29-34.
[36] Ryabov, Y.E.; Puzenko, A.; Damped oscillations in view of the fractional oscillator equation; Phys. Rev. B: 2002; Volume 66 ,184201.
[37] Ahmad, W.E.; Elwakil, A.S.R.; Fractional-order Wien-bridge oscillator; Electron. Lett.: 2001; Volume 37 ,1110-1112.
[38] Uchaikin, V.V.; ; Fractional Derivatives for Physicists and Engineers: Berlin Heidelberg 2013; Volume Volumes II . · Zbl 1312.26002
[39] Duan, J.-S.; Wang, Z.; Liu, Y.-L.; Qiu, X.; Eigenvalue problems for fractional ordinary differential equations; Chaos Solitons Fractals: 2013; Volume 46 ,46-53. · Zbl 1258.34041
[40] Lin, L.-F.; Chen, C.; Zhong, S.-C.; Wang, H.-Q.; Stochastic resonance in a fractional oscillator with random mass and random frequency; J. Stat. Phys.: 2015; Volume 160 ,497-511. · Zbl 1360.82069
[41] Duan, J.-S.; A modified fractional derivative and its application to fractional vibration equation; Appl. Math. Inf. Sci.: 2016; Volume 10 ,1863-1869. · Zbl 1138.81482
[42] Alkhaldi, H.S.; Abu-Alshaikh, I.M.; Al-Rabadi, A.N.; Vibration control of fractionally-damped beam subjected to a moving vehicle and attached to fractionally-damped multi-absorbers; Adv. Math. Phys.: 2013; Volume 2013 ,232160. · Zbl 1291.74084
[43] Dai, H.; Zheng, Z.; Wang, W.; On generalized fractional vibration equation; Chaos Solitons Fractals: 2017; Volume 95 ,48-51. · Zbl 1373.74025
[44] Ren, R.; Luo, M.; Deng, K.; Stochastic resonance in a fractional oscillator driven by multiplicative quadratic noise; J. Stat. Mech. Theory Exp.: 2017; Volume 2017 ,023210. · Zbl 1456.70036
[45] Xu, Y.; Li, Y.; Liu, D.; Jia, W.; Huang, H.; Responses of Duffing oscillator with fractional damping and random phase; Nonlinear Dyn.: 2013; Volume 74 ,745-753. · Zbl 1279.34095
[46] He, G.; Tian, Y.; Wang, Y.; Stochastic resonance in a fractional oscillator with random damping strength and random spring stiffness; J. Stat. Mech. Theory Exp.: 2013; Volume 2013 ,P09026. · Zbl 1456.70041
[47] Leung, A.Y.T.; Guo, Z.; Yang, H.X.; Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators; Commun. Nonlinear Sci. Numer. Simul.: 2013; Volume 18 ,2900-2915. · Zbl 1314.34137
[48] Chen, L.C.; Zhuang, Q.Q.; Zhu, W.Q.; Response of SDOF nonlinear oscillators with lightly fractional derivative damping under real noise excitations; Eur. Phys. J. Spec. Top.: 2011; Volume 193 ,81-92.
[49] Deü, J.-F.; Matignon, D.; Simulation of fractionally damped mechanical systems by means of a Newmark-diffusive scheme; Comput. Math. Appl.: 2010; Volume 59 ,1745-1753. · Zbl 1189.65137
[50] Drăgănescu, G.E.; Bereteu, L.; Ercuţa, A.; Luca, G.; Anharmonic vibrations of a nano-sized oscillator with fractional damping; Commun. Nonlinear Sci. Numer. Simul.: 2010; Volume 15 ,922-926. · Zbl 1221.74059
[51] Rossikhin, Y.A.; Shitikova, M.V.; New approach for the analysis of damped vibrations of fractional oscillators; Shock Vib.: 2009; Volume 16 ,365-387.
[52] Xie, F.; Lin, X.; Asymptotic solution of the van der Pol oscillator with small fractional damping; Phys. Scr.: 2009; Volume 2009 ,014033.
[53] Gomez-Aguilar, J.F.; Rosales-Garcia, J.J.; Bernal-Alvarado, J.J.; Cordova-Fraga, T.; Guzman-Cabrera, R.; Fractional mechanical oscillators; Rev. Mex. Fis.: 2012; Volume 58 ,348-352.
[54] Liu, Q.X.; Liu, J.K.; Chen, Y.M.; An analytical criterion for jump phenomena in fractional Duffing oscillators; Chaos Solitons Fractals: 2017; Volume 98 ,216-219. · Zbl 1372.34104
[55] Leung, A.Y.T.; Yang, H.X.; Guo, Z.J.; The residue harmonic balance for fractional order van der Pol like oscillators; J. Sound Vib.: 2012; Volume 331 ,1115-1126.
[56] Kavyanpoor, M.; Shokrollahi, S.; Challenge on solutions of fractional Van Der Pol oscillator by using the differential transform method; Chaos Solitons Fractals: 2017; Volume 98 ,44-45. · Zbl 1372.34103
[57] Xiao, M.; Zheng, W.X.; Cao, J.; Approximate expressions of a fractional order Van der Pol oscillator by the residue harmonic balance method; Math. Comput. Simul.: 2013; Volume 89 ,1-12. · Zbl 1490.34014
[58] Chen, L.; Wang, W.; Li, Z.; Zhu, W.; Stationary response of Duffing oscillator with hardening stiffness and fractional derivative; Int. J. Non-Linear Mech.: 2013; Volume 48 ,44-50.
[59] Wen, S.-F.; Shen, Y.-J.; Yang, S.-P.; Wang, J.; Dynamical response of Mathieu-Duffing oscillator with fractional-order delayed feedback; Chaos Solitons Fractals: 2017; Volume 94 ,54-62. · Zbl 1373.34106
[60] Liao, H.; Optimization analysis of Duffing oscillator with fractional derivatives; Nonlinear Dyn.: 2015; Volume 79 ,1311-1328. · Zbl 1345.49044
[61] Abu-Gurra, S.; Ertürk, V.S.; Momani, S.; Application of the modified differential transform method to fractional oscillators; Kybernetes: 2011; Volume 40 ,751-761. · Zbl 1511.65074
[62] Ikeda, T.; Harata, Y.; Hiraoka, R.; Intrinsic localized modes of 1/2-order subharmonic oscillations in nonlinear oscillator arrays; Nonlinear Dyn.: 2015; Volume 81 ,1759-1777.
[63] ; Vibration Theory: Shanghai, China 1960; .
[64] Andronov, A.A.; Victor, A.A.; Hayijin, С.Э.; ; Oscillation Theory: Beijing, China 1974; .
[65] Gabel, R.A.; Roberts, R.A.; ; Signals and Linear Systems: New York, NY, USA 1973; .
[66] Zheng, J.L.; Ying, Q.Y.; Yang, W.L.; ; Signals and Systems: Beijing, China 2000; Volume Volume 1 .
[67] Gelfand, I.M.; Vilenkin, K.; ; Generalized Functions: New York, NY, USA 1964; Volume Volume 1 . · Zbl 0136.11201
[68] Griffel, D.H.; ; Applied Functional Analysis: New York, NY, USA 1981; . · Zbl 0461.46001
[69] Miller, K.S.; Ross, B.; ; An Introduction to the Fractional Calculus and Fractional Differential Equations: New York, NY, USA 1993; . · Zbl 0789.26002
[70] Klafter, J.; Lim, S.C.; Metzler, R.; ; Fractional Dynamics: Recent Advances: Singapore 2012; . · Zbl 1238.93005
[71] Lavoie, J.L.; Osler, T.J.; Tremblay, R.; Fractional derivatives and special functions; SIAM Rev.: 1976; Volume 18 ,240-268. · Zbl 0324.44002
[72] Uchaikin, V.V.; ; Fractional Derivatives for Physicists and Engineers: Berlin Heidelberg 2013; Volume Volume I . · Zbl 1312.26002
[73] Mathai, A.M.; Haubold, H.J.; ; Special Functions for Applied Scientists: New York, NY, USA 2008; . · Zbl 1151.33001
[74] Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V.; ; Mittag-Leffler Functions: Related Topics and Applications, Theory and Applications: Berlin Heidelberg 2014; . · Zbl 1309.33001
[75] Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G.; ; Higher Transcendental Functions: New York, NY, USA 1955; Volume Volume I . · Zbl 0064.06302
[76] Papoulis, A.; ; The Fourier Integral and Its Applications: New York, NY, USA 1962; . · Zbl 0108.11101
[77] Chung, W.S.; Jung, M.; Fractional damped oscillators and fractional forced oscillators; J. Korean Phys. Soc.: 2014; Volume 64 ,186-191.
[78] Korotkin, A.I.; ; Added Masses of Ship Structures, Fluid Mechanics and Its Applications: Berlin Heidelberg 2009; Volume Volume 88 .
[79] Jin, X.D.; Xia, L.J.; ; Ship Hull Vibration: Shanghai, China 2011; .
[80] Nakagawa, K.; Ringo, M.; ; Engineering Vibrations: Shanghai, China 1981; .
[81] Kaslik, E.; Sivasundaram, S.; Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions; Nonlinear Anal. Real World Appl.: 2012; Volume 13 ,1489-1497. · Zbl 1239.44001
[82] Gabaix, X.; Gopikrishnan, P.; Plerou, V.; Stanley, H.E.; A theory of power-law distributions in financial market fluctuations; Nature: 2003; Volume 423 ,267-270. · Zbl 1058.91034
[83] Stanley, H.E.; Phase transitions: Power laws and universality; Nature: 1995; Volume 378 ,554.
[84] Levy, C.; Pinchas, M.; Maximum likelihood estimation of clock skew in IEEE 1588 with fractional Gaussian noise; Math. Probl. Eng.: 2015; Volume 2015 ,174289. · Zbl 1395.94132
[85] Pinchas, M.; Symbol error rate for non-blind adaptive equalizers applicable for the SIMO and fGn case; Math. Probl. Eng.: 2014; Volume 2014 ,606843.
[86] Toma, C.; Wavelets-computational aspects of Sterian-realistic approach to uncertainty principle in high energy physics: A transient approach; Adv. High Energy Phys.: 2013; Volume 2013 ,735452. · Zbl 1328.81026
[87] Bakhoum, E.G.; Toma, C.; Transient aspects of wave propagation connected with spatial coherence; Math. Probl. Eng.: 2013; Volume 2013 ,691257. · Zbl 1299.78005
[88] Cattani, C.; Ciancio, A.; Laserra, E.; Bochicchio, I.; On the fractal distribution of primes and prime-indexed primes by the binary image analysis; Phys. A Stat. Mech. Appl.: 2016; Volume 460 ,222-229. · Zbl 1400.11012
[89] Mardani, A.; Heydari, M.H.; Hooshmandasl, M.R.; Cattani, C.; A meshless method for solving time fractional advection-diffusion equation with variable coefficients; Comput. Math. Appl.: 2017; . · Zbl 1418.65144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.