×

Fractional derivative and time delay damper characteristics in Duffing-van der Pol oscillators. (English) Zbl 1314.34137

Summary: We investigate the damping characteristics of two Duffing-van der Pol oscillators having damping terms described by fractional derivative and time delay respectively. The residue harmonic balance method is presented to find periodic solutions. No small parameter is assumed. The results agree well with the numerical solutions for a wide range of parameters. Based on the obtained solutions, the damping effects of these two oscillators are investigated. When the system parameters are identical, the steady state responses and their stability are qualitatively different. The initial approximations are obtained by solving a few harmonic balance equations. They are improved iteratively by solving linear equations of increasing dimension. The second-order solutions accurately exhibit the dynamical phenomena when taking the fractional derivative and time delay as bifurcation parameters respectively. When damping is described by time delay, the stable steady state response is more complex because time delay takes past history into account implicitly. Numerical examples taking time delay and fractional derivative are respectively given for feature extraction and convergence study.

MSC:

34K07 Theoretical approximation of solutions to functional-differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34K37 Functional-differential equations with fractional derivatives
34K13 Periodic solutions to functional-differential equations
Full Text: DOI

References:

[1] Awrejcewicz, J.; Mrozowski, J., Bifurcations and chaos of a particular van der Pol-Duffing oscillator, J Sound Vib, 132, 1, 89-100 (1989) · Zbl 1235.70114
[2] Ji, J. C.; Hansen, C. H., Stability and dynamics of a controlled van der Pol-Duffing oscillator, Chaos Solitons Fractals, 28, 2, 555-570 (2006) · Zbl 1084.34040
[3] Kimiaeifar, A.; Saidi, A. R., Analytical solution for van der Pol-Duffing oscillators, Chaos Solitons Fractals, 42, 5, 2660-2666 (2009) · Zbl 1198.65145
[4] Qian, Y. H.; Chen, S., Accurate approximate analytical solutions for multi-degree-of-freedom coupled van der Pol-Duffing by homotopy analysis method, Commun Nonlinear Sci Numer Simul, 15, 10, 3113-3130 (2010) · Zbl 1222.65092
[5] Chen, S. H.; Cheung, Y. K., An elliptic perturbation method for certain strongly non-linear oscillators, J Sound Vib, 192, 2, 453-464 (1996) · Zbl 1232.70017
[6] Leung, A. Y.T.; Zhang, Q. C., Complex normal form for strongly non-linear systems exemplified by Duffing-van der Pol equation, J Sound Vib, 213, 5, 907-914 (1998) · Zbl 1235.34116
[7] Chen, A. Y.; Jiang, G. Y., Periodic solution of the Duffing-van der Pol oscillator by homotopy perturbation method, Int J Comput Math, 87, 12, 2688-2696 (2010) · Zbl 1337.65109
[8] Chen, Y. M.; Liu, J. K., Uniformly valid solution of limit cycle of the Duffing-van der Pol equation, Mech Res Commun, 36, 7, 845-850 (2009) · Zbl 1273.70036
[9] Mukherjee, S.; Roy, B.; Dutta, S., Solution of the Duffing-van der Pol oscillator equation by a differential transform method, Phys Scr, 83, 1, 015006 (2011) · Zbl 1317.34062
[10] Francisco, M. F., Comment on ‘Solution of the Duffing-van der Pol oscillator equation by a differential transform method’, Phys Scr, 84, 3, 037002 (2011) · Zbl 1320.34004
[11] Podlubny, I., Fractional differential equations (mathematics in science and engineering) (1999), Academic Press: Academic Press New York · Zbl 0924.34008
[12] Rossikhin, Y. A.; Shitikova, M. V., Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results, Appl Mech Rev, 63, 1, 010801-10852 (2010)
[13] Hu, H. Y.; Wang, Z. H., Dynamics of controlled mechanical systems with delayed feedback (2002), Springer: Springer Berlin · Zbl 1035.93002
[14] Atay, F. M., Van der pol’s oscillator under delayed feedback, J Sound Vib, 218, 333-339 (1998) · Zbl 1235.70142
[15] Oliveira JCF de, Oscillations in a van der Pol equation with delayed argument, J Math Anal Appl, 275, 2, 789-803 (2002) · Zbl 1022.34067
[16] Ali, K. E.; Mohammad, K., A homotopy analysis method for limit cycle of the van der Pol oscillator with delayed amplitude limiting, Appl Math Comput, 217, 22, 9404-9411 (2011) · Zbl 1215.65122
[17] Belhaq, M.; Sah, S. M., Fast parametrically excited van der Pol oscillator with time delay state feedback, Int J Non-Linear Mech, 43, 2, 124-130 (2008)
[18] Xu, J.; Chung, K. W., Effects of time delay feedback on a van der Pol-Duffing oscillator, Phys. D, 180, 17-39 (2003) · Zbl 1024.37028
[19] Li, X.; Ji, J. C.; Hansen, C. H.; Tan, C., The response of a Duffing-van der Pol oscillator under delayed feedback control, J Sound Vib, 291, 3-5, 644-655 (2006) · Zbl 1243.70021
[20] Maccari, A., Vibration amplitude control for a van der Pol-Duffing oscillator with time delay, J Sound Vib, 317, 1-2, 20-29 (2008)
[21] Lin, G., Periodic solutions for van der Pol equation with time delay, Appl Math Comput, 187, 2, 1187-1198 (2007) · Zbl 1210.34096
[22] Barbosa, R. S.; Machado, J. A.T.; Vinagre, B. M.; Calderón, A. J., Analysis of the van der Pol oscillator containing derivatives of fractional order, J Vib Control, 13, 9-10, 1291-1301 (2007) · Zbl 1158.70009
[23] Pinto, C. M.A.; Machado, J. A.T., Complex order van der Pol oscillator, Nonlinear Dyn, 65, 3, 247-254 (2011)
[24] Pinto, C. M.A.; Machado, J. A.T., Complex order forced van der Pol oscillator, J Vib Control, 18, 4, 2201-2209 (2012)
[25] Duan, J. S.; Sun, J.; Temuer, C. L., Nonlinear fractional differential equation combining Duffing equation and van der Pol equation, J Math, 31, 1, 7-10 (2011)
[26] Wang, H. L.; Hu, H. Y., Remarks on the perturbation methods in solving the second-order delay differential equations, Nonlinear Dyn., 33, 379-398 (2003) · Zbl 1049.70013
[27] Lakrib, M., The method of averaging and functional differential equations with delay, Int J Math Math Sci, 26, 8, 497-511 (2001) · Zbl 0994.34054
[28] Pankaj, W.; Anindya, C., Averaging oscillations with small fractional damping and delayed terms, Nonlinear Dyn, 38, 1-4, 3-22 (2004) · Zbl 1142.34385
[29] Hu, H. Y.; Wang, Z. H., Singular perturbation methods for nonlinear dynamic systems with time delays, Chaos Solitons Fractals, 40, 1, 13-27 (2009) · Zbl 1197.34113
[30] Das, S. L.; Chatterjee, A., Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations, Nonlinear Dyn, 30, 4, 323-335 (2002) · Zbl 1038.34075
[31] Dal, F., Multiple time scales solution of an equation with quadratic and cubic nonlinearities having fractional-order derivative, Math Comput Appl, 16, 1, 301-308 (2011) · Zbl 1230.34049
[32] Casal, A.; Freedman, M., A Poincaré-Lindstedt approach to bifurcation problems for differential-delay equations, IEEE Trans Autom Control, 25, 967-973 (1980) · Zbl 0437.34058
[33] Urabe, M., Galerkin’s procedure for nonlinear periodic systems, Arch Ration Mech Anal, 20, 120-152 (1965) · Zbl 0133.35502
[34] Blaquiére, A., Nonlinear systems analysis (1966), Academic press: Academic press New York
[35] Macdonald, N., Harmonic balance in delay-differential equations, J Sound Vib, 186, 4, 649-656 (1995) · Zbl 0963.34068
[36] Wu, Z. M.; Lu, J. G.; Xie, J. Y., Analyzing chaos in fractional-order systems with the harmonic balance method, Chin Phys, 15, 6, 1201-1207 (2006)
[37] Lai, S. K.; Lim, C. W., Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators, Appl Math Model, 33, 2, 852-866 (2009) · Zbl 1168.34321
[38] Wu, B. S.; Sun, W. P.; Lim, C. W., An analytical approximate technique for a class of strongly nonlinear oscillators, Int J Non-Linear Mech, 41, 6-7, 766-774 (2006) · Zbl 1160.70340
[39] Wu, B. S.; Lim, C. W.; Sun, W. P., Improved harmonic balance approach to periodic solutions of non-linear jerk equations, Phys Lett A, 354, 1-2, 95-100 (2006)
[40] Leung, A. Y.T.; Guo, Z. J., Residue harmonic balance approach to limit cycles of non-linear jerk equations, Int J Non-Linear Mech, 46, 6, 898-906 (2011)
[41] Leung, A. Y.T.; Guo, Z. J., Forward residue harmonic balance for autonomous and non-autonomous systems with fractional derivative damping, Commun Nonlinear Sci Numer Simul, 16, 4, 2169-2183 (2011) · Zbl 1221.34014
[42] Gu, K. Q.; Kharitonov, V. L.; Chen, J., Stability of time-delay systems (2003), Birkhäuser: Birkhäuser Boston · Zbl 1039.34067
[43] Balakumar, B.; Tamás, K. N.; David, E. G., Delay Differential Equations: Recent Advances and New Directions (2009), Springer · Zbl 1162.34003
[44] Petráš, I., Stability of fractional order systems with rational orders: a survey, Fract Calc Appl Anal, 12, 3, 269-298 (2009) · Zbl 1182.26017
[45] Tavazoei, M. S.; Haeri, M., A note on the stability of fractional order systems, Math Comput Simul, 79, 1566-1576 (2009) · Zbl 1168.34036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.